COOPERATIVE MISSION CONCEPTS USING BIOMORPHIC EXPLORERS

Sarita Thakoor, Carlos Miralles*, Terry Martin, Ralph Kahn and Rich Zurek

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099

*AeroVironment
222 East Huntington Drive, Suite 200
Monrovia, CA 91016

30th Lunar and Planetary Science Conference: Poster Session
FUTURE Missions: SCIENCE AND TECHNOLOGY
March 16, 1999, University of Houston, Clear Lake, Houston
EXECUTIVE SUMMARY

Inspired by the immense variety of naturally curious explorers (insects, animals, and birds), their well integrated biological sensor-processor suites that are efficiently packaged in compact but highly dexterous forms, and their complex, intriguing, cooperative behaviors, this study focuses on “Biomorphic Explorers” and presents cooperative biomorphic planetary exploration scenarios. Biomorphic explorers are defined as small, dedicated, low-cost explorers that capture some of the key features of biological systems. These include versatile mobility, adaptive distributed controls, and cooperative behavior. Biomorphic explorers offer the potential to obtain significant scientific payoff at a low cost by utilizing the power of a large number of cooperatively functioning units. This is analogous to operational principles of navigation and intercommunication used by social insects such as honeybees and ants.

A classification of these explorers based on their mobility and ambient environment divides them broadly into biomorphic flight systems and biomorphic surface/subsurface systems. Another classification is based on size: envelope volume and mass. Three general overlapping categories are defined: ‘A’ = 1 to 20 cm³, < 20 g; ‘B’ = 10 to 200 cm³, < 200 g; and ‘C’ = 100 to 2000 cm³, < 2 kg. Example candidates in each category are presented. Such biomorphic explorers can potentially enable new capabilities in cooperative mission scenarios along with orbiters, landers, rovers, and/or balloons. Biomorphic flight systems, in particular, have the potential for substantially higher mobility (in speed, range, and terrain independence). Biomorphic flight systems can even be made to deliver instrument payload/other biomorphic explorers to target sites, greatly extending the utility of those explorers. Cooperative exploration with an orbiter, a lander/balloon, a rover, and a multitude of inexpensive biomorphic explorers would allow comprehensive exploration at low cost and with broad spatial coverage. For orbiters, landers, rovers, and manned missions, flight systems in particular provide a means for exploring beyond the visual range of onboard cameras. They aid in identifying targets of scientific interest and determining optimal pathways to those targets. The biomorphic flight system itself can be designed to seek out features of interest, crash at the target site, and then act as a homing beacon for further experiments. An important application is to use them as scouts in future planetary exploration where they would look for samples/sites of interest in heretofore inaccessible locations. The mission concepts described in this study focus on the biomorphic flight systems in the size B regime, namely biomorphic gliders, seedwing flyers, and powered flyers. Considerations of low mass, long range, and high payload mass fraction led to the choice of the glider as the subject for a conceptual system design. For example, the Biomorphic Glider provides a combination of low mass (< 100 g), high payload fraction (> 50%), and large terrain coverage (50-100 km in 10 minutes).

The mission concepts developed in this study are targeted toward the following key objectives: (1) Atmospheric Information Gathering: Distributed Multiple Site Measurements, (2) Close-Up Imaging and Exobiology Site Selection, (3) Deployment of Payload: Instruments/Crawlers, etc., and (4) Sample Return Reconnaissance. This study shows that biomorphic glider missions can be implemented in several different scenarios because of their low mass and hence can be sent rapidly in the mass reserves of upcoming orbiter, lander, or balloon missions. The study concludes that biomorphic explorers is a technology push on
(1) miniaturization & integration of payload,
(2) cooperative communication innovations such as monolithic transceiver integration and dynamic networks of self-routing optimal comm interlinks,
(3) biomorphic flight systems, and
(4) biomechatronic surface system innovations.
BIOMORPHIC EXPLORERS

- SMALL, DEDICATED, LOW-COST EXPLORERS THAT CAPTURE SOME OF THE KEY FEATURES OF BIOLOGICAL EXPLORERS
 - VERSATILE MOBILITY: aerial, surface, subsurface, and in fluids
 - ADAPTIVE, DISTRIBUTED OPERATION
 - BIOMORPHIC COOPERATIVE BEHAVIOR
- CONDUCTED WORKSHOP, AUG 19-20, 1998
 - SPONSORED BY TAP, SESPD, CISM, NMP
 - VERY SUCCESSFUL; OVER 150 PARTICIPANTS
Biomorphic Explorers: Classification
(Based on Mobility and Ambient Environment)

Biomorphic Explorers

Aerial

Biomorphic Flight Systems

Surface/Subsurface

Biomorphic Surface Systems

Biomorphic Subsurface Systems

Examples of biological systems that serve as inspiration for designing the biomorphic explorers in each class

Seed Wing Honey Bee Ant Centipede Earthworm Jelly Fish Soaring Bird Humming Bird Snake Germinating Seed

http://www.gregscott.com/rwscott/rwscott.htm

sarita.thakoor@jpl.nasa.gov
Biomorphic Explorers: Classification
(Based on Mobility and Ambient Environment)

Biomorphic Explorers

- **Aerial**
 - Biomorphic Flight Systems
 - Seed Wing Flyer (60 g)
 - Ornithopter
 - Glider (75 g)
 - Powered Flyer

- **Surface/Subsurface**
 - Biomorphic Surface Systems
 - Hexapod (1-2 kg)
 - Reconfigurable Legs/Feet
 - Artificial Earthworm
 - Worm Robot (85 g)
 - Biomorphic Subsurface Systems
 - Artificial Jelly Fish

Candidate biomorphic explorers on the drawing board, with mass of design under study in 1998 in parentheses

http://www.gregscott.com/rwscott/rwscott.htm
BIOMORPHIC EXPLORERS

BIOMORPHIC EXPLORERS: SIZE BASED CLASSIFICATION

<table>
<thead>
<tr>
<th>Volume Envelopes (cm³)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic Configurations

Modeled After...

http://www.gregscott.com/rwscott/rwscott.htm

sarita.thakoor@jpl.nasa.gov
BIOMORPHIC EXPLORERS: VERSATILE MOBILITY

BIOLOGICAL EXAMPLE OF RECONFIGURABLE MOBILE UNIT

CHALLENGE: TO DESIGN RECONFIGURABLE MOBILE UNIT

BIOLOGICAL EXAMPLES OF FLYERS

FLYERS

BIOMORPHIC FLIGHT SYSTEMS

• DOD LEVERAGE

* http://www.gregscott.com/rwscott/rwscott.htm

sarita.thakoor@jpl.nasa.gov
BIOMORPHIC EXPLORERS

ADVANCED MOBILITY FOR BIOMORPHIC EXPLORERS

RECONFIGURABLE MOBILE UNITS

*http://www.gregscott.com/rwscott/rwscott.htm

sarita.thakoor@jpl.nasa.gov
COORDINATED/COOPERATIVE EXPLORATION SCENARIO

BIOMORPHIC EXPLORERS

COOPERATIVE ORGANIZATION OF LANDER, ROVER, AND A VARIETY OF INEXPENSIVE BIOMORPHIC EXPLORERS WOULD ALLOW COMPREHENSIVE EXPLORATION AT LOWER COST WITH BROADER COVERAGE.
BIOMORPHIC EXPLORERS

- PAYOFF

- BIOMORPHIC EXPLORERS, IN COOPERATION WITH CURRENT EXPLORATION PLATFORMS SUCH AS LANDERS AND ORBITERS, CAN ENABLE
 - EXPLORATION OF CURRENTLY INACCESSIBLE AND/OR HAZARDOUS LOCATIONS
 - MUCH BROADER COVERAGE OF EXPLORATION SITES
 - EXPLORATION AT LOWER COST
BIOMORPHIC SURFACE/SUBSURFACE SYSTEMS

- BIOMORPHIC SURFACE/SUBSURFACE SYSTEMS ARE A UNIQUE COMBINATION OF RECONFIGURABLE MOBILE UNITS AND THEIR CONTROL BY ADAPTIVE, FAULT-TOLERANT ALGORITHMS TO AUTONOMOUSLY MATCH WITH THE CHANGING AMBIENT/TERRAIN CONDITIONS. THEY PERFORM IN COOPERATIVE MODES TO ENABLE SCIENCE RETURN THAT IS CURRENTLY UNAVAILABLE.
MOTIVATION: PARADIGM SHIFT FOR ENHANCED SCIENCE RETURN

CURRENT ROVERS

BIOMORPHIC MICROEXPLORERS

TRADITIONAL ACTUATORS/MOTORS

CONVENTIONAL CONTROL

CONVENTIONAL DESIGN

INDIVIDUALISTIC BEHAVIOR

FLEXIBLE, RECONFIGURABLE MOBILE BUILDING BLOCKS

HYBRID DIGITAL-ANALOG NEURAL CONTROL

EVOLVED FOR ADAPTATION, RECONFIGURABLE

COOPERATIVE BEHAVIOR

sarita.thakoor@jpl.nasa.gov
• Extended reach over all kinds of terrain
• Unique perspective for imaging
• Many flyers work in cooperation with orbiters, landers, larger aircraft, and balloons to enable new missions to reach currently inaccessible locations
Biomorphic flight systems offer rapid mobility and extended reach. For comparison, the above illustrates for the same total mass of the system, the respective payload fractions in each case (more detail page 91).
Biomorphic Gliders

- Small, simple, low-cost system ideal for reconnaissance and wide-area dispersion of sensors and small experiments.
- Payload mass fraction higher (50-70%) compared to powered flyers.

Design Goals:

- Small total mass, ~100 grams
- High payload mass fraction, >50%
- Mobility: L/D ~5, controlled flight, autonomous navigation using Sun position
- Captures features of soaring birds, utilizing rising currents in the environment
Biomorphic Glider Mission Concept

- Mission Objective
 - Up-close, high-resolution imagery of targeted sites.
 - In-situ surface chemical/mineralogical measurement to augment imagery.
 - Atmospheric survey.
 - Reconnaissance for lander/rover mission planning (site selection).

- Deployment
 - Airborne platforms (balloons, larger aircraft)
 - Space (entry probe)

- Payloads
 - MEMS chem, soil oxidation, or pH
 - Temperature and pressure
 - Imaging camera
 - IR sensor

- Flight Profile
 - The deployment platform carries several gliders. Gliders are released after identifying a target site and specifying a flight heading, or they fly a pre-programmed flight trajectory (based on Sun angle).
 - The gliders fly to the surface, collecting atmospheric data (temperature and pressure) and taking pictures.
 - After landing, each glider conducts a surface experiment, which is analyzed using a MEMS sensor for presence of key trace elements or soil properties.
 - The glider then transmits the data to the deployment platform or other relay.
μFlyers - Powered Vehicle

- Payload mass fraction 10 to 20%.
- Scaling: Span ~ Mass$^{1/2}$
- Trade-off between payload mass and range.
- Launch from landers, rovers, entry probes, or larger aircraft.
- Reconnaissance and small sensor/experiment dispersion

Representative design parameters:
- Total Mass = 57 g
- Payload Mass = 6 g
- Wingspan = 0.194 m
- Wing Area = 0.019 m2
- Volume = 380 cm3
- Flight Speed = 84 m/s
- Range = 10 km
- Duration = 120 s
- Glide Ratio = 5.3
- Starting Alt. = 0 km

Performance calculations based on conditions at 5 km altitude on Mars.

sarita.thakoor@jpl.nasa.gov
Powered Mission Concept

- **Mission Objective**
 - Imagery of over-the-horizon terrain and in-situ surface chemical/mineralogical measurement for rover mission planning (site selection).

- **Deployment**
 - Lander

- **Payloads**
 - MEMS sensors for chemistry, soil oxidation, or pH
 - Temperature and Pressure
 - Imaging camera
 - IR sensor

- **Flight Profile**
 - The rover is equipped with several μFlyers. A mechanical spring is used to launch the μFlyer after specifying a flight heading (Sun angle).
 - The μFlyer relays imagery to the lander.
 - After landing, each glider conducts a surface experiment, which is analyzed using a MEMS sensor for presence of key trace elements.
 - The μFlyer, equipped with a small solar cell, then acts as a radio beacon for rover navigation.
 - The rover can also be equipped with μFlyers to help find suitable pathways.
Seed Wing Flyers

- Simpler and smaller than parachute on small scale for dispersion of sensors and small experiments.
- Slow Descent Rate ~ 5 m/s (at surface of Mars)

Design Goals:

- Small total mass, ~100 g
- High payload mass fraction, > 80%
- Captures key features of slow and stable descent as observed in Samaras, such as maple seeds

Maple Seed Samara
BIOMORPHIC EXPLORERS

Seed Wing Mission Concept

• Mission Objective
 • Wide-area dispersion of in-situ surface chemical/mineralogical measurement to augment imagery.
 • Atmospheric survey.
 • Reconnaissance for lander/rover mission planning (site selection).

• Deployment
 • Entry probe or airborne platform (glider, balloon, powered a/c)

• Payloads
 - MEMS sensors for chemistry, soil oxidation, or pH
 - Temperature and Pressure

• Flight Profile
 • Seed wings are sequentially deployed from another airborne platform (glider, balloon) or entry probe.
 • Each seed wing autorotates to the surface, collecting atmospheric data (temperature and pressure).
 • After landing, each seed wing conducts a surface experiment using pyrotechnic or chemical test, which is analyzed using a MEMS sensor for presence of key trace elements. Also, the seed wing could deploy a biomorphic surface/subsurface explorer such as the worm robot.
 • The orbiter or airborne platform emits a signal initiating sequential download of data from each seed wing. A phased array antenna is used to locate the source and recover the data.
Biomorphic Explorer: Conceptual Design

BIOMORPHIC EXPLORERS

BIOMORPHIC COOPERATIVE BEHAVIOR
BIOMORPHIC CONTROL
ALGORITHMS

μSENSORS

RECONFIGURABILITY

ADVANCED MOBILITY

μNAVIGATION

μCOMMUNICATION

TEMPERATURE CONTROL

μSTRUCTURE

μCOMPUTING

μPOWER

POINT DESIGN SELECTION

SOME OF THE ISSUES BEING ADDRESSED:

- SYSTEM DESIGN/INTEGRATION
- COMMUNICATION NEEDS
- VERSATILE MOBILITY DESIGNS
- CHALLENGES (LOAD/SENSORS)
- CONFIGURATION, POWER, SIZE, MASS, SPEED, DEGREES OF FREEDOM
- BIOMORPHIC CONTROLS INNOVATION
- MISSION REQUIREMENTS AND POTENTIAL

sarita.thakoor@jpl.nasa.gov
<table>
<thead>
<tr>
<th>SYSTEM TYPE</th>
<th>MASS (g)</th>
<th>VOLUME (cm³)</th>
<th>POWER (W)</th>
<th>SPEED m/s</th>
<th>NUMBER PER MISSION (PAYLOAD ~3 kg)</th>
<th>TERRAIN COVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOMORPHIC FLIGHT SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLIDER</td>
<td>75</td>
<td>300</td>
<td>3</td>
<td>90</td>
<td>32</td>
<td>ALL TYPES ~50 km -100 km range covered in ~ 10 min</td>
</tr>
<tr>
<td>SEED WING FLYER</td>
<td>60</td>
<td>77</td>
<td>2.5</td>
<td>6</td>
<td>25-50 (deployment platform dependent)</td>
<td>ALL TYPES</td>
</tr>
<tr>
<td>BIOMORPHIC SURFACE/SUBSURFACE SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORM ROBOT</td>
<td>85</td>
<td>300</td>
<td>TBD</td>
<td>0.003</td>
<td>30</td>
<td>VERY LIMITED LIMITED ~ 0.06 km range covered in ~ 10 min</td>
</tr>
<tr>
<td>HEXAPOD</td>
<td>1000-2000</td>
<td>750</td>
<td>5-10</td>
<td>0.1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* Needs Innovations of biomechatronic design
COMPARISON OF 1998 BIOMORPHIC SYSTEM DESIGNS

Worm robot is an advanced concept in its infancy that awaits development of an innovative biomechatronic design.

Multipods have been extensively worked on, and small quadrupod or hexapod designs using flexible carbon steel legs have been made, which can be smaller than the hexapod designed in 1998. Making a hexapod suitable for the rocky Mars terrain dictated the design of this science-purpose hexapod. Because of its large mass (1-2 kg), for a biomorphic mission, this design would not be amenable to easy multiplicity.

When considering the specific applications of wide-area coverage for site selection via imaging and collecting atmospheric data from multiple points, the glider clearly stands out as the choice because of its low mass, high payload fraction, and long range (terrain coverage of 50-100 km in just about ten minutes). Additionally, the technology to build a small glider can be readily leveraged from the recent developments in micro air vehicles. Therefore, the glider was selected for end-to-end baseline conceptual design development.
<table>
<thead>
<tr>
<th>PLATFORM</th>
<th>IMAGERY, TARGET, AND SITE CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLIDERS</td>
<td>• IMAGING CLOSE TO CANYON WALLS FOR EXCELLENT SPATIAL RESOLUTION</td>
</tr>
<tr>
<td></td>
<td>• IN-FLIGHT ATMOSPHERIC MEASUREMENTS, MULTIPLE LOCATIONS, SIMULTANEOUSALLY</td>
</tr>
<tr>
<td></td>
<td>• CAN TRAVERSE RUGGED TERRAIN, LONG RANGE, HIGH COVERAGE DENSITY</td>
</tr>
<tr>
<td></td>
<td>• EXCELLENT NAVIGATION AND TARGETING CONTROL, PROVIDES SITE DIVERSITY</td>
</tr>
<tr>
<td></td>
<td>• LOW-COST PLATFORM ALLOWS REDUNDANCY, LOW MISSION RISK, HIGH PAYLOAD FRACTION</td>
</tr>
<tr>
<td>ORBITER</td>
<td>• HIGH SPATIAL RESOLUTION POSSIBLE</td>
</tr>
<tr>
<td></td>
<td>• COMPOSITION POSSIBLE, BUT AT POOR SPATIAL RESOLUTION</td>
</tr>
<tr>
<td></td>
<td>• STEEP VERTICAL WALLS ARE POORLY RESOLVED</td>
</tr>
<tr>
<td>LANDER</td>
<td>• DISTANCE FROM WALLS LEADS TO POOR RESOLUTION</td>
</tr>
<tr>
<td></td>
<td>• NEAR-FIELD OBSTRUCTIONS MAY LIMIT VIEW OF PRIMARY TARGETS</td>
</tr>
<tr>
<td></td>
<td>• NO TRAVERSE CAPABILITY</td>
</tr>
<tr>
<td>ROVER</td>
<td>• TRAVERSE LIMITED TO 1 TO 3 km OVER PERIOD OF DAYS</td>
</tr>
<tr>
<td></td>
<td>• CANNOT ACCESS MULTIPLE SITES</td>
</tr>
<tr>
<td></td>
<td>• CANNOT ACCESS STEEP AND ROUGH WALL SLOPES</td>
</tr>
<tr>
<td>BALLOON</td>
<td>• NO ABILITY TO CONTROL TARGET LOCATION</td>
</tr>
<tr>
<td></td>
<td>• SENSITIVITY TO LOCAL WINDS, RAPID TEMPERATURE AND PRESSURE FLUCTUATIONS</td>
</tr>
<tr>
<td>POWERED AIRCRAFT</td>
<td>• LOWER PAYLOAD FRACTION</td>
</tr>
<tr>
<td></td>
<td>• MORE MASS, MORE POWER, LARGER WINGSPAN, ASSOCIATED ADDITIONAL COSTS</td>
</tr>
<tr>
<td></td>
<td>• HIGHER COSTS & LARGER SIZE REDUCE MULTIPICITY</td>
</tr>
</tbody>
</table>
Biomorphic Explorer: Conceptual Design

GLIDER SELECTED

GLIDER BASELINE DESIGN CHARACTERISTICS

- MASS: 75 g
- PAYLOAD FRACTION: 60%
- GLIDE RATIO, L/D ~ 5.8
- LARGE RANGE OF AERIAL MOBILITY: ~50 km to 100 km
- LEVERAGE FROM UAV TECHNOLOGY

SELECTION CRITERIA

- LOW MASS/VOLUME
- HIGH PAYLOAD FRACTION
- LARGE RANGE OF MOBILITY
- ACTIVE CONTROL IMPLEMENTATION READINESS

- VOLUME: 300 cm³
- ACTIVE FLIGHT CONTROL
- SOLAR NAVIGATION
- SOARING FLIGHT IN RISING CURRENTS
- COOPERATIVE MISSION: 32 GLIDERS
- COVERAGE AREA: ~100 km x 100 km

sarita.thakoor@jpl.nasa.gov
Biomorphic Glider Deployment Concept: Probe Deploy/Lander Relay

- Probe enters atmosphere
- Heat shield and phased array deployed (14 km).
- Gliders released (12 km).
- In-flight measurements (12 km to surface)
- Gliders fly preset flight plans based on Sun position.
- LANDER ROVER
- COM PORT 1
- Surface measurements
- Relay to Earth
- Probe collects and transmits data to relay.
- Gliders transmit data to probe.
- JAVELIN
- COM PORT 2

sarita.thakoor@jpl.nasa.gov
Biomorphic Glider Deployment Concept: Probe Deploy/Probe Relay

Probe enters atmosphere

Heat shield and phased array deployed (14 km).
Gliders released (12 km).

In-flight measurements
(12 km to surface)

Gliders fly preset flight plans based on Sun position.

Surface measurements

Relay to Earth

Probe collects and transmits data to relay.

Gliders transmit data to probe.
Biomorphic Glider Deployment Concept: Probe Deploy/Dual Relay

Probe enters atmosphere

Heat shield and phased array deployed (14 km).
Gliders released (12 km).

In-flight measurements
(12 km to surface)
Gliders fly preset flight plans based on Sun position.

_probe collects and transmits data to relay.
Gliders transmit data to probe.

LANDER ROVER

COM PORT 1
Surface measurements

Relay to Earth

JAVELIN

COM PORT 2
Biomorphic Glider Deployment Concept: Larger Glider Deploy/Local Relay

Probe enters atmosphere

Heat shield released and antenna deployed (14 km).

Larger Aircraft (Large Glider) released (13 km)

Large Glider flies preset flight plan deploying the biomorphic gliders

LARGER GLIDER

COM PORT 1

LANDER ROVER

Surface measurements

Biomorphic Gliders perform in-flight measurements (12 km to surface)

Local relay collects and transmits data to orbiter

Gliders transmit data to local relay.

COM PORT 2

JAVELIN

sarita.thakoor@jpl.nasa.gov
Biomorphic Glider Deployment Concept: Balloon Deploy/Balloon Relay

Winds Aloft

Gliders released as balloon drifts downwind.

Balloon probe transmits data to orbiter.

Gliders transmit data to balloon probe.

Glider in-flight measurements

Glider surface observations

sarita.thakoor@jpl.nasa.gov
Biomorphic Glider Deployment Concept: Balloon Deploy/Dual Relay

Winds Aloft

Gliders released as balloon drifts downwind.

Balloon probe transmits data to orbiter.

Giders transmit data to balloon probe.

Glider in-flight measurements

Glider surface observations
Biomorphic Gliders

- Small, simple, low-cost system ideal for reconnaissance and wide-area dispersion of sensors and small experiments.
- Payload mass fraction 50% or higher.

<table>
<thead>
<tr>
<th>Baseline</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Mass (M)</td>
<td>57</td>
<td>75</td>
<td>250</td>
<td>500g</td>
</tr>
<tr>
<td>Payload (P)</td>
<td>32</td>
<td>45</td>
<td>150</td>
<td>300g</td>
</tr>
<tr>
<td>P/M fraction</td>
<td>56</td>
<td>60</td>
<td>60</td>
<td>60%</td>
</tr>
<tr>
<td>Wing Span</td>
<td>0.19</td>
<td>0.25</td>
<td>0.50</td>
<td>0.76m</td>
</tr>
<tr>
<td>Wing Area</td>
<td>0.014</td>
<td>0.021</td>
<td>0.071</td>
<td>0.143m²</td>
</tr>
<tr>
<td>Volume</td>
<td>168</td>
<td>300</td>
<td>1700</td>
<td>5200cm³</td>
</tr>
<tr>
<td>Flight Speed</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90m/s</td>
</tr>
<tr>
<td>Range</td>
<td>50</td>
<td>55</td>
<td>72</td>
<td>83km</td>
</tr>
<tr>
<td>Duration</td>
<td>590</td>
<td>650</td>
<td>800</td>
<td>1300s</td>
</tr>
<tr>
<td>Glide Ratio</td>
<td>5.3</td>
<td>5.8</td>
<td>7.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Starting Alt.</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10km</td>
</tr>
</tbody>
</table>

- Performance calculations based on conditions at 5 km altitude on Mars.
- Volume based on projected area x mean thickness x 1.2

sarita.thakoor@jpl.nasa.gov
BIOMORPHIC EXPLORERS

75 g Biomorphic Glider Internal Arrangement

- System Components
 1. Battery, Li 400 mAh**
 2. Right elevon servo
 3. Left elevon servo
 4. Total pressure sensor
 5. Static pressure sensor**
 6. Temperature sensor**
 7. Airspeed sensor**
 8. Sun position sensor**
 9. Flight controls computer
 10. Pitch rate sensor (2)
 11. Roll rate sensor (2)
 12. Surface experiment*
 13. Camera*
 14. C & DH*
 15. Communications*
 16. Antenna*
 17. IR sensor*

 * Payload elements
 ** Shared payload/aircraft

sarita.thakoor@jpl.nasa.gov
75-g Biomorphic Glider Mass/Power Budgets

<table>
<thead>
<tr>
<th>Item</th>
<th>Mass (g)</th>
<th>Payload</th>
<th>Peak Power (W)</th>
<th>Average* Power (W)</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Battery</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
<td>Li 400 mAh, LTC-311</td>
<td></td>
</tr>
<tr>
<td>2 Right elevon servo</td>
<td>0.5</td>
<td></td>
<td>0.200</td>
<td>0.200</td>
<td>AV experience, micro geared servos</td>
<td></td>
</tr>
<tr>
<td>3 Left elevon servo</td>
<td>0.5</td>
<td></td>
<td>0.200</td>
<td>0.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Total pressure sensor</td>
<td>1.5</td>
<td></td>
<td>0.010</td>
<td>0.010</td>
<td>IMMI IMP 2000</td>
<td></td>
</tr>
<tr>
<td>5 Static pressure sensor</td>
<td>1.5</td>
<td></td>
<td>0.010</td>
<td>0.010</td>
<td>IMMI IMP 2000</td>
<td></td>
</tr>
<tr>
<td>6 Temperature sensor</td>
<td>0.2</td>
<td></td>
<td>0.025</td>
<td>0.025</td>
<td>Si or Pt chip** [Iksan,Jumo]</td>
<td></td>
</tr>
<tr>
<td>7 Airspeed sensor</td>
<td>1.5</td>
<td></td>
<td>0.005</td>
<td>0.005</td>
<td>Servo motor/anemometer</td>
<td></td>
</tr>
<tr>
<td>8 Sun position sensor</td>
<td>1.0</td>
<td></td>
<td>0.005</td>
<td>0.005</td>
<td>Four-element photocell</td>
<td></td>
</tr>
<tr>
<td>9 Flight controls computer</td>
<td>1.0</td>
<td></td>
<td>0.050</td>
<td>0.050</td>
<td>AV experience, incl. some A-D conv.</td>
<td></td>
</tr>
<tr>
<td>10 Pitch rate sensor (2)</td>
<td>2.0</td>
<td></td>
<td>0.120</td>
<td>0.120</td>
<td>AV experience, Murata piezoceramic</td>
<td></td>
</tr>
<tr>
<td>11 Roll rate sensor (2)</td>
<td>2.0</td>
<td></td>
<td>0.120</td>
<td>0.120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Surface experiment</td>
<td></td>
<td></td>
<td>10.0</td>
<td>10.000</td>
<td>Payload reserve***</td>
<td></td>
</tr>
<tr>
<td>13 Camera</td>
<td></td>
<td></td>
<td>20.0</td>
<td>0.250</td>
<td>JPL design, miniature camera</td>
<td></td>
</tr>
<tr>
<td>14 C&DH</td>
<td></td>
<td></td>
<td>2.0</td>
<td>0.050</td>
<td>Incl. some A-D conv. for science instr.</td>
<td></td>
</tr>
<tr>
<td>15 Communications</td>
<td></td>
<td></td>
<td>5.0</td>
<td>10.000</td>
<td>JPL/Caltech/AeroVironment design</td>
<td></td>
</tr>
<tr>
<td>16 Antenna</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td>JPL/Caltech/AeroVironment design</td>
<td></td>
</tr>
<tr>
<td>17 IR sensor</td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.200</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>18 Airframe/IC/Misc.</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td>Composite/ribbon/misc.</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal
| Total | 30.5 | 44.8 | 21.245 | 3.095 |

* Average power consumed with duty cycle over 600 s flight.
** Data reflects device noted or next generation of device.
*** TBD
Note: Battery mass shared between payload and glider systems.
Glider Locating Strategy

- **Position Inferred from Data**
 - Entry point + flight plan + glider performance + pressure altitude + images => approximate position

- **Probe Relay Phased Array**
 - Glider position relative to probe determined by beam direction and glider pressure altitude
 - Probe approximate position tracked by orbiters or using same phased array and orbiters

- **Options**
 - Lander equipped with phased array

sarita.thakoor@jpl.nasa.gov
15. Telecommunications

- The proposed communication plan for the gliders and the lander/relay is based on a self-organized, self-routing network, which changes dynamically during the flight and after landing. The network is based on short-range communication between the glider to route the information to the lander/relay by forming a self-configured, amorphous network of multiple hubs (gliders).

- The glider transceiver will be implemented using monolithic integrated circuit technology to minimize the number of discrete components and hence lower the cost, failure susceptibility, and weight of the glider units, allowing them to carry payload and achieve longer data collection lifetime. The possibility of direct communication between the gliders and the orbiter (at a much lower rate) also makes the system more tolerant to possible failures in the relay unit. A glider transceiver weighing ~5 g and consuming less than 2 W total average power in a package of <3 cm x 6 cm x 1 cm, heat sink included, can be designed and developed. 900 MHz is selected to be the optimum choice of communication frequency both from link performance and monolithic integrated circuit implementation considerations.
Glider Comm Strategy

- Entry Probe as Comm Relay
 - Vantage point above gliders with lower rate of descent, insuring good comm link even with gliders on surface
 - Gliders can transmit using optimal self-organized, self-routing network
 - Can tailor comm design to mission
 - Entry probe becomes lander and maintains comm link to glider network for long-term surface measurements

- Options
 - Use existing lander as comm relay
 - low cost
 - limits site selection
 - risk that entry error puts some gliders out of range
 - Deploy separate lander
 - permits site flexibility
 - added cost
Biomorphic Glider Deployment/Telecommunication Concept

Probe enters atmosphere

Heat shield and gliders released (12-14 km).

In flight measurements (12 km to surface)

Gliders transmit data to local relay using self-organized, self-routing network, which changes dynamically during the flight and after landing, to communicate optimally the information to the local relay.

LANDER ROVER

COM PORT 1

Relay to Earth

JAVELIN

COM PORT 2

Surface measurements
• 32 gliders packaged into a Arianne Structure for Auxiliary Payload (ASAP) compatible self-righting probe.
Biomorphic Glider Landing Survivability

- **Initial Conditions**
 - 72 m/s horizontal flight speed at 0 km (on surface of Mars)
 - 13 m/s descent rate at 0 km

- **General Considerations**
 - Impact trajectory is at an angle to flat surface. Some gliders may have a direct impact on a rock and not survive,... but there are many gliders.
 - Electronics and sensors are all very low-mass integrated or discrete surface-mounted devices designed for several 1000’s of g’s - need roughly 2 cm to dissipate half the flight speed.
 - Battery has highest mass. Can be mounted with crush zone and wire leads for power to the PCBA so that it can break free and not lose electrical connection.
 - Surface experiment most vulnerable; MEMS technology most likely to survive hard landings.
 - Airframe and flight subsystems are expendable.
BIOMORPHIC EXPLORERS

Objective - Atmospheric Science

• VALIDATION AND PREDICTION OF GLOBAL CIRCULATION MODELS BASED ON THE NEAR SURFACE ENVIRONMENTAL DATA AND BOUNDARY LAYER DATA

• ADDRESS MESOSCALE METEOROLOGY (T, P, Wind, Opacity). TARGET GLIDER CLUSTER TO AN AREA (~ 100 km x 100 km) THAT IS DIVERSE

• SPECIFIC TARGET SITES:
 • mouth of a canyon
 • edge of a polar cap
 • outflow channels

• TIME THE RELEASE OF BIOMORPHIC GLIDERS TO OBTAIN THE MEASUREMENT OF EPHEMERAL PHENOMENA SUCH AS DUST STORMS
Biomorphic Glider In-Flight Measurements

- **Meteorology**
 - Multiple gliders permits analysis of temporal and spatial variations in measurement
 - **Atmospheric Pressure** (transducer)
 - **Temperature** (thermistor)
 - **Solar Irradiance** (solar cell)
 - **Atmospheric Turbulence Spectra** (glider flight data and accelerometers)
 - **Winds** (airspeed sensor + ground track from image data)
 - Sample volume defined by cone 10 km high and 100 km at base

Total number of measurements =
 - # gliders
 - \times # measurements/s
 - \times flight time

Release at \(~ 12 \text{ km}~

Gliding flight 115 m/s

2 km

10 km

600 s

50 km

9 m/s

sarita.thakoor@jpl.nasa.gov
WHY ATMOSPHERIC SCIENCE USING GLIDERS?

The lower atmosphere is difficult to measure from orbit; infrared remote sensing techniques typically cannot separate the atmospheric contribution from that of the surface in the lowest scale height. Yet the boundary layer, where the surface interaction takes place, is of great importance, being the location of energy transfer in the form of friction, radiation, and conduction.

Direct instrumentation of the lower atmosphere is difficult; usually towers and balloons are employed for this purpose on Earth. The former are massive and the latter temporary. Where horizontal change occurs in the surface, such as in canyons, a network of balloons would be required to observe the range of phenomena. Such topographic regions are important because the winds arising there may help in the origination of dust storms. Dust storms of Martian intensity are unique, and their formation is one of the main problems of planetary atmosphere dynamics.

Glider networks, although temporary, provide a way to sample both laterally and vertically within a short time period, from a single originating point. The spatial scale of coverage, as wide as 100 km, is adequate to span large Martian canyon boundaries. The sampling rate can be high enough to resolve the relevant small-scale phenomena within the lowest 10 km. Gliders can be directed to cover particular directions, unlike balloons.

An additional benefit of gliders is the ability to image during descent, providing proof of glide path, determination of wind (together with airspeed), and geologic context at a large range of spatial resolutions.
Objective: Imaging & Surface Science

- Detailed close-up imaging and mapping of the terrain to enable site selection of potential exobiological sample areas
- Imaging of Valles Marineris
 - one single site rich in geologic units
 - study stratigraphic column top to bottom along the canyon wall
 - optimum science sample site
- Deployment of surface science payloads on potentially interesting but hard-to-access locations
Biomorphic Glider In-Flight Measurements

- Imaging
 - Images at high altitude of limited science value compared to orbiter (resolution, FOV).
 - Provides context for low-altitude images
 - Images at lower altitude of greater value.
 - Unique perspective
 - Higher resolution than possible from orbit
 - Access to rugged terrain not possible with rover (or reconnaissance for future rover mission)
 - Camera looking forward and down 30 deg
 - minimizes smear
 - view of landing site in successive nested frames

Total number of measurements =
Gliders
X # images

Release

2 km

Gliding flight
115 m/s

10 km
600 s

50 km
72 m/s

sarita.thakoor@jpl.nasa.gov
Footprints of Descent Images

Context frame acquired by carrier vehicle, 100 km x 100 km area
Miniature Digital Camera Assembly

- **Key Elements**
 - **Active Pixel Sensor (APS) Imaging Chip**
 - 2-D imaging array using CMOS technology
 - On-chip digital circuitry gives full programmable control to enable digital camera-on-a-chip operation.
 - On-chip camera control functions include frame rate, exposure parameter, electronic shuttering, analog-to-digital readout.
 - **Mass:** 5 g
 - **Grayscale:** 8 - 10 bit
 - **Aperture size:** 5 mm × 5 mm (512 × 512 pixels, 7.9 μm pixel pitch)
 - **Power consumption:** 50 mW - 250 mW (varies with frame size)
 - **Imaging Lens**
 - 1 cm diameter, 50 mm focal length, lightweight plastic lens
 - **Mass:** 3 g

- **Customized packaging**
 - A customized miniature digital camera would be achieved by integrating an imaging lens on top of a camera-on-a-chip circuit board with the following specifications
 - **Mass:** 20 g
 - **Power consumption:** < 250 mW
 - **Speed:** 30 - 100 frames/s

The above includes mass margin for an innovative stereo camera package to be designed using a dual lens image input fused onto a single APS imaging chip.

47
Biomorphic Glider Surface Measurements

• Large Number of Samples, Coverage and Diversity
 • Total number of sites = number of gliders
 • Total area ~ 100 km circle, permits broad area coverage of interesting geological regions

• Distributed In-Situ Experiments
 • Chemical Composition
 - Evolved gasses, (heat activated)
 - Chemical reaction
 - Drill probe, H2O/CO2 ice concentration vs. soil depth

Gas Source

Thermistor
Flow Turbulators
Flow
Mem Sensor
Hot-wire Anemometer

West Candor

sarita.thakoor@jpl.nasa.gov
Biomorphic Glider Surface Measurements

• Long-Term Distributed Surface Observations
 (diurnal variation of relevant parameters)
 • Seismic Measurement (accelerometers)
 • Atmospheric Pressure (pressure transducer)
 • Temperature (thermistor)
 • Solar Irradiance (solar cell)
 • Near-IR sensor to help differentiate water ice clouds from dust clouds
 (Would require additional solar cells for power)

• Imaging
 • Potential for interesting data if camera survives landing:
 • images showing local variation in soil/rock/terrain roughness on a scale relevant to rover mobility for future missions
 • local landscape images taken from perspective not obtainable from orbit from areas not accessible by rover
BIOMORPHIC EXPLORERS

SCIENCE APPLICATIONS

...WHICH WOULD BE ENABLED/ENHANCED BY SUCH EXPLORERS....

• VALLES MARINERIS EXPLORATION
 • ONE SINGLE SITE RICH IN GEOLOGIC UNITS
 • STUDY STRATIGRAPHIC COLUMN TOP TO BOTTOM
 ALONG THE CANYON WALL
 • OPTIMUM SCIENCE SAMPLE SITE
 imager, temperature sensor, pressure sensor, sniffer: e-nose, individual gases, elements, etc.

• SCOUTING FOR CONDITIONS COMPATIBLE WITH LIFE TO LEAD US TO THE SPOTS
 THAT MAY HOLD SAMPLES OF EXTINCT/EXTANT LIFE
 • WIDE-AREA SEARCH WITH INEXPENSIVE EXPLORERS EXECUTING DEDICATED
 SENSING FUNCTIONS
 Individual gases, sniffer: e-nose, chemical reactions, pyrotechnic test, elements,
 specific amino acids, signatures of prebiotic chemistry, etc.

• GEOLOGICAL DATA GATHERING:
 • DISTRIBUTED TEMPERATURE SENSING
 • SEISMIC ACTIVITY MONITORING
 • VOLCANIC SITE
 Multitude of explorers working in a cascade or daisy-chain fashion
 cooperatively to fulfill task
BIOMORPHIC EXPLORERS

Biomorphic Issues for Future Incorporation

• Glider Navigation
 • Simple => Flight plan/navigation based on Sun angle (similar to bees) or GPS position
 • Intelligent => Use camera data to steer to interesting targets, neural site selector logic unit
 • Cooperative => Communication between gliders to maximize target diversity.

• Glider Performance
 • Soaring techniques => Glider performance (range and duration) can be greatly extended by taking advantage of atmospheric air currents much in the same way soaring birds use orthographic and convective currents to sustain flight for long periods of time and to cover great distances without flapping. (Probably not very useful on Mars, but may be of great value on Jupiter or Venus)

• Flight Controls
 • Possibility of capturing sensory-flight control mapping transformation onto neural chips will be explored to obtain goals of damage tolerance/adaptive controls
Biomorphic Glider Deployment/Telecommunication Concept (long term)

Probe enters atmosphere

Heat shield and gliders released (12-14 km).

In-flight measurements (12 km to surface)

Gliders fly preset flight plans based on GPS waypoint navigation.

Marsnet GPS, Relay to Earth

Gliders transmit data to orbiter using self-adaptive, self-routing techniques.

Surface measurements

sarita.thakoor@jpl.nasa.gov
BIOMORPHIC EXPLORERS

Glider Navigation Strategy (long term)

• GPS Navigation
 • Requires miniature GPS technology for gliders and Marsnet implementation
 • Each glider has unique flight plan using GPS waypoint navigation referenced to actual release point
 • Functional day or night

• Adaptive Targeting to Maximize Science Return
 • Gliders provided list of prioritized science target signatures
 • Glider flight trajectory can be adjusted to take advantage of high-priority science targets captured in camera/sensor FOV
 • During comm process, each glider notes which class of target neighbors are focused on and determines need to adjust flight plan to maximize target diversity (eliminates problem of all gliders going after same high-priority target)
Glider Comm Strategy (long term)

- Local Relay Utilizing Self-Adaptive Phased Array (potential innovative concept)

 - Motivation
 - Mass and volume constraints limit RF capability of individual glider to communicate directly with orbiter in current telecom plan
 - Total mission mass, cost, and volume can be minimized (or number of gliders maximized) by having relay that can locate gliders
 - Comm strategy becomes very fault tolerant (i.e., not dependent on any single system to operate, can tolerate failure of several gliders without impacting overall performance)

 - Approach
 - Use self-adaptive phased array antenna techniques on local relay
 - Orbiter system used as reference, can use two “chirps” in succession to determine modulation phasing for each individual glider
 - Gliders communicate between themselves and share data to be transmitted before transmitting to local relay
Glider Locating Strategy (long term)

- Position Determined Using GPS
 - Requires miniature GPS technology for gliders and Marsnet implementation
 - Functional day or night

- Position Inferred from Data
 - Entry point + flight plan + glider performance + pressure altitude + images => GPS position validation
CONCLUSIONS

• BIOMORPHIC EXPLORERS IS A Viable TECHNOLOGY THAT WILL ENABLE NEW COOPERATIVE EXPLORATION MISSIONS

• "BIOMORPHIC SCIENCE GLIDER" FOR MARS WITH FOLLOWING FEATURES:
 • MASS < 100 g
 • PAYLOAD FRACTION > 50%
 • LONG RANGE ~ 50-100 km
 • SOLAR NAVIGATION IS AERODYNAMICALLY POSSIBLE

• BIOMORPHIC GLIDER MISSIONS CAN BE IMPLEMENTED IN SEVERAL DIFFERENT SCENARIOS, AND, THEREFORE, BIOMORPHIC EXPLORERS CAN BE SENT RAPIDLY IN THE MASS RESERVES OF UPCOMING ORBITER, LANDER, OR BALLOON MISSIONS

• BIOMORPHIC EXPLORERS IS A TECHNOLOGY PUSH ON
 • MINIATURIZATION & INTEGRATION OF PAYLOAD
 • COOPERATIVE COMMUNICATION INNOVATIONS
 • monolithic transceiver integration
 • dynamic networks of self-routing optimal comm-interlinks
 • BIOMORPHIC FLIGHT SYSTEMS
 • BIOMECHATRONIC SURFACE SYSTEM INNOVATIONS
ACKNOWLEDGMENTS

The research described in this document was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Personnel from the JPL Engineering and Science Directorate performed the research for the Microspacecraft Systems Technology Office of the JPL Technology and Applications Programs Directorate (TAPD), and the NASA Office of Space Science sponsored it. Within TAPD this work was supported by the NASA Technology Program.

The following people contributed useful inputs and/or suggestions:

Mark Allen, JPL
Dave Bell, JPL
Tien-Hsin Chao, JPL
Dave Collins, JPL
Zareh Gorjian, JPL
Ali Hazimiri, Caltech
Bruce Kwan, JPL

Brett Kennedy, JPL
Sylvia Miller, JPL
Frank Palluconi, JPL
Hoppy Price, JPL
Dave Rutledge, CALTECH
Ron Salazar, JPL