
A Flexible Statechart-to-Model-Checker Translator

[System Demonstration Proposal for ISRE’991

Nicolas Rouquette, Julia Dunphy & Martin S. Feather
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91 109, USA
+1 818 354 1194

Nicolas.Rouquette@Jpl.Nasa.Gov, Julia.Dunphy@Jpl.Nasa.Gov & Martin.S.Feather@Jpl.Nasa.Gov

OVERVIEW
Many current-day software design tools offer some variant of statechart notation for system
specification. We, like others, have built an automatic translator from (a subset of) statecharts to a model
checker, for use to validate behavioral requirements. Our translator is designed to be flexible. This
allows us to quickly adjust the translator to variants of statechart semantics, including problem-specific
notational conventions that designers employ.

Our system demonstration will be of interest to the following two communities:

Potential end-users: Our demonstration will show translation from statecharts created in a
commercial UML tool (Rational Rose) to Promela, the input language of Holzmann’s model checker
SPIN. The translation is accomplished automatically. To accommodate the major variants of
statechart semantics, our tool offers user-selectable choices among semantic alternatives. Options for
customized semantic variants are also made available. The net result is an easy-to-use tool that
operates on a wide range of statechart diagrams to automate the pathway to model-checking input.

Other researchers: Our translator embodies, in one tool, ideas and approaches drawn from several
sources. Solutions to the major challenges of statechart-to-model-checker translation (e.g.,
determining which transition(s) will fire, handling of concurrent activies) are reified in a uniform,
fully mechanized, setting. The way in which the underlying architecture of the translator itself
facilitates flexible and customizable translation will also be evident.

MOTIVATION FOR TRANSLATOR
We see increasing use of statechart-like notations, in our environment for specifying portions of
spacecraft. These notations are both precise and user-friendly. Precise means they can be manipulated
mechanically (e.g., by automatic code generators). User-friendly means they are readily adopted by a
wide variety of users, an important asset in development of spacecraft, since experts from diverse areas
(e g , navigation, power, telecommunications) are involved.

The critical nature of spacecraft control software warrants thorough validation and verification to assure
its correct operation. Its state-based nature offers admits analysis via state-exploration (a.k.a. “model
checking”) techniques. Indeed, our colleagues have demonstrated the practical utility of this analysis
technique applied to spacecraft software [Schneider et al, 19981, [Lowry et al, 19971.

mailto:Nicolas.Rouquette@Jpl.Nasa.Gov
mailto:Julia.Dunphy@Jpl.Nasa.Gov
mailto:Martin.S.Feather@Jpl.Nasa.Gov

The Promela code generated by our translator considers transitions in order of their priority, highest
first. For classical statecharts semantics, this is as follows (" ..." indicates code fragements omitted for
brevity of presentation):

1 MATLAB 8 The MathWorks Inc, Rational Rose 8 Rose Corporation, Statemate 8 I-Logix Inc, Visio
63 Visio Corporation.

2

...
if
1: I N-STATE-Sys-B ->

if
:: x>l -> Sys-Response1 = T
:: else ->

if
:: x>O -> Sys-Response2 = T
:: else -> skip

f i
f i

:: Sys-Response1 -> Sys-state = Sys-D ...
:: Sys-Response2 -> Sys-state = Sys-C . . .

The transition from A to C is considered first - if enabled, it will cause Sys-Response1 to occur,
namely the transition to state D. Using Promela’s “if . . . else . . . fi” construct, we ensure that the
transition from B is considered only if all the transitions from A have been determined to be un-enabled.

We also offer the option of a simple translation that imposes no prioritization among transitions from
nested states. That is, it is possible to take any such enabled transitions.

...
if

:: x>l -> Sys-Response1 = T
:: x>O -> Sys-Response2 = T
:: else -> skip

f i
...
This option can be used to check safety properties that should hold regardless of the priority scheme
adopted. When SPIN is executed on such Promela code, all the possible transitions will be explored.

The above fragments also illustrate our treatment of statechart concurrency - in order that the
enabledness of transitions of concurrent statecharts (or concurrent substates) be correctly computed, our
translator separates the computation of which transitions are to take place from their subsequent
execution. (In the Promela fragments above, the Sys-Response1 and Sys-Response2 variables are
booleans serve to communicate between these two phases).

ORGANIZATION OF THE TRANSLATOR FOR FLEXIBILITY
Briefly, our translator is organized as a network of information processing nodes and information
repositories. The figure on the next page shows a fragment of the translator network. In our current
implementation we use Visio as the front-end GUI, which connects to Visual Basic to execute the
translator itself. The network orchestrates the translation. At the back end, Visual Basic connects to the
design tool (currently we are using Rational Rose) to access statechart information. This organization
facilitates an expert user in re-arranging the translation on a case-by-case basis in response to semantic
needs.

3

I

1 I

CONCLUSIONS
Our translator is an implemented system, integrated with a commercial design tool. By demonstration of
our translator, we hope to elicit interest from potential users who would benefit from such an automated
path from design notations to formal analysis, and to engage in more technical interchanges with
researchers pursuing similar objectives.

ACKNOWLEDGMENTS

We are especially grateful to Gerard Holzmann, Erich Mikk and Diego Latella, all of whom have been
generous with inspiration and helpful advice.

The research and development described in this paper was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
administration. Funding was provided under NASA’s Code Q Software Program Center Initiative UPN
#323-098-5. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States
government or the Jet Propulsion Laboratory, California Institute of Technology.

REFERENCES

[Day, 19931 N. Day, “A Model Checker for Statecharts (Linking CASE tools with Formal Methods)”.
Technical Report 93-35, Integrated System Design Laboratory, Dept. of Computer Science,
University of British Columbia, October 1993.

4

[Czerny & Heimdahl, 19981 B.J. Czerny & M.P.E. Heimdahl, “Automated Integrative Analysis of State-
Based Requirements”. Proceedings of the 13’h IEEE International Conference on Automated
Software Engineering, Honolulu, Hawaii, Oct. 1998.

[Harel, 19871 D. Harel, “Statecharts: A visual formalism for complex systems.” Science of Computer
Programming 8(3):231-274, 1987.

[Harel & Naamad, 19961 D. Harel & A. Naamad, “The STATEMATE Semantics of Statecharts.” ACM
Transactions on Software Engineering and Methodology 5(4):293-333, Oct 1996.

[Heitmeyer et al, 19981 C. Heitmeyer, J. Kirby, B. Labaw, M. Archer & R. Bharadwaj, “Using
Abstraction and Model Checking to Detect Safety Violations in Requirements Specifications.” IEEE
Transactions on Software Engineering 24(1 1):927-948, November 1998.

[Holzmann, 19971 G.J. Holzmann, “The Model Checker SPIN.” IEEE Transactions on Software
Engineering, 23(5):279-295, May 1997.

[Lattela et al, 19991 D. Latella, I. Majzik & M. Masink, “Towards a Formal Operational Semantics of
UML Statechart Diagrams.” To appear in FMOODS 1999.

[Lowry et al, 19971 M. Lowry, K. Havelund & J. Penix, “Verification and Validation of AI Systems
that Control Deep-Space Spacecraft”. Slightly revised version of a paper that appeared in
Foundations of Intelligent Systems, (Eds. Z.W. Ras, A. Skowron), Tenth International Symposium
on Methodologies for Intelligent Systems, Charlotte, North Carolina, Oct. 15-18, 1997. Springer-
Verlag Lecture Notes in Artificial Intelligence, Vol. 1325.

[Mikk et al, 19981 E. Mikk, Y. Lakhnech, M. Siegel, G.J. Holzmann, “Implementing Statecharts in
PromeldSPIN“. Proceedings, Workshop on Industrial Strength Formal Techniques, Boca Raton,
Florida, Oct. 1998.

[Schneider et al, 19981 F. Schneider, S.M. Easterbrook, J.R. Callahan & G.J.Holzmann, “Validating
Requirements for Fault Tolerant Systems using Model Checking.” International Conference on
Requirements Engineering, 1998.

5

