Technical Tracks associated with paper (indicate 1, delete those which don't apply)

* Modelling and Tools

Areas of Special Interest associated with paper (indicate 1, delete remainder)

Model driven design

Author's Information: (for Brian Mar Student Award)
Professional

Intended Audience (indicate all that apply, delete others):

Experienced Practitioner Academics
Trainers
New Practitioner Researcher

Recommended Expertise of Reviewer (indicate one or more, delete others):

Architecture SE Mgmt
Requirements Mgmt Systems Analysis
Tools

Process

Using COTS tools in the Development of a Model
Based Avionics Architecture Tool

Jet Propulsion Laboratory
4800 Oak Grove Dr., Pasadena, CA 91109, USA

I-Logix Inc.
Three Riverside Drive, Andover, MA 01810, USA

Abstract. Information and discussion of the
development of an Avionics Architecture Tool that is
model-based using commercial off the shelf (COTS)
products will be provided. Statemate Magnum from
I-Logix Inc. was used in this work. Five areas of
interest will be discussed. How to allow Architecture
trades in a cost-effective manner with environments
that are frequently changing. How to allow easily
modified “Plug and Play” architectural models.
How to utilise a common standard interface to
address all technical concerns. How models
generated using the tool can be used to evaluate and
produce lower level requirements. Finally, how to
integrate tool-generated models with existing or
externally generated subsystem models for spacecraft
level simulation.

INTRODUCTION

System engineering plays a more important role
in spacecraft design than most of the other
applications. This is because space missions are
expensive and risky, and space environments are very
unforgiving. Any mistake made in system
engineering would easily result in millions of dollars
of budget overrun or even the loss of the spacecraft.
Over the years, the Jet Propulsion Laboratory (JPL)
has developed a system engineering process for
spacecraft development. This process includes
mission conceptual development, system definition,
and architecture design. While this process has been
successfully applied to many flight missions, it has
been costly and lengthy because it requires many
meetings of system engineers in order to establish the
requirements and specifications. - Worse yet, these
traditional textual requirements and specifications are
error prone, often ambigious and sometimes contain
many oversights and mistakes. Therefore, JPL has
initiated a series of efforts to develop a set of system
engineering tools to improve the process. One of

these tools is the Avionics System Architecture Tool
(ASAT).

ASAT focuses only on the avionics system of the
spacecraft design. The process of avionics system
design is similar to, and in fact driven by, the
spacecraft design process. Hence, in the mission
concept phase, the avionics system engineer has to
estimate mass, power, volume, and cost of the
avionics system based on the mission concept. The
avionics system engineer may have to negotiate with
the spacecraft system engineer if the estimates exceed
the amounts allocated. Eventually, these estimates
become the mission level requirements for the
avionics system. In the system definition phase, more
detailed mission requirements are developed. These
requirements are evaluated by the avionics system
engineer, who then creates a high-level avionics
architecture. The mass, power, volume, and cost
estimates are revisited based on the high-level
architecture. The system performance and reliability
are estimated and compared against the mission
requirements. In the architecture design phase,
details of the avionics architecture are developed.
Trade studies are employed to consider diferent
architecture options. Detailed requirements are
generated for implementation. All estimates and
functional correctness of the architecture are verified
through design reviews [2].

An experienced avionics system engineer can
complete the mission concept and system definition
phases in a relatively short time with the help of
simple tools such as spreadsheets. This is because
these two design phases can tolerate a rather large
margin of error in the estimates and because many
details of the spacecraft system have not been
defined. In contrast, because the architecture design
phase involves generating details of the architecture,
functional correctness is a major concern. The
margin of error in the estimates also has to be

tightened because it has direct impact on the cost and
schedule in the implementation phase.

The activities of the architecture design phase
lend themselves to using executable architecture
models as an analysis tool. Executable architectures
can verify architecture functions and estimate
accuracy. They can also allow the engineer to
explore system dynamics such as interactions
between components and time dependent behaviours.
However, executable architectures and related
development tools have their own requirements. In
order to support trade studies, the architecture model
should be flexible and modular, made up of
components can be easily added, removed, or
exchanged while verifying the consistency of the
component interfaces. Such flexibility can also
support reuse of architecture models. That is, once an
architecture model is captured, the model itself or its
components can be used to model other avionics
systems with only minimal changes. Furthermore,
the simulation results of the architecture model
should be easily captured and formatted to guide the
development of the implementation requirements.
Finally, since the architecture model is executable, it
should be able to be integrated with other subsystem
models to support spacecraft level simulations, which
are often used to verify command sequences in
mission operations. These requirements suggest a
more sophisticated tool than a simple spreadsheet.

The role of ASAT in the spacecraft development

--process is depicted in Figure 1. The objective of
ASAT is to help the avionics system engineers to
develop architecture models to meet these needs.

Mission
Requirements

System
Requirements

R__equi;i:sru‘en{é;:}5
for Detailed
- Design

Simulation
Results

Subsystem

Integrated
Architecture

Avionics
System
Architecture

Avionics
(CDH, Power, ACS I/F, System Model

Telecom I/F)

APPROACH

In order to prove the concept is achievable,
ASAT is being developed in the context of an X2000-
like avionics architecture model. X2000 is a
technology program at JPL funded by NASA to
develop system architecture and technologies for
future spacecraft. The X2000 architecture is highly
scalable and adaptable to a wide range of space
missions. A typical instance of an X2000 architecture
is shown in Figure 2. The ASAT prototype will

demonstrate the capability to capture this architecture
or modify the

and then replace components
architecture with minimum effort.

0 _ T

12C Bus

Sensor

Sensor

Figure 2: X2000 Architecture
Model

In addition to the demonstration effort, ASAT
development includes capturing and implementing an
array of needs users might have for a system
engineering oriented tool suite. Interviews with
members of the user community helped develop sets
of needs in four main areas: ease of use, capability
(vis-a-vis competing tools), validated components,
and cost effectiveness. These needs are being
analyzed to determine sets of effectiveness measures
in each area. These effectiveness measures are, in
turn, evaluated to determine interrelationships, rank,

and cost. The result being a set of requirements on
ASAT.

The approach to meeting users needs in each of
the four areas is described in Table 1.

User Need Satisfaction

Easeof Use | e Design and implement

technologies common to all
components that support user
concepts of ease of use,
including:

e Plug and Play

e Data Driven

Capability e Design and implement
architecture components of
appropriate accuracy and

fidelity

e Design and implement support
tools that allow users to do
things competing tools do not
support

e Use development tools that
support analysis of architecture

dynamics

Validation o Design and develop
components based on standard
specification (e.g. IEEE Std
1394a)

Cost ¢ Components are reusable

Effectiveness

e Architectures are reusable

¢ Reduce architecture
development time

e Reduce trade study time

Table 1: The ASAT Approach to Meeting
User Needs

ASAT - THE TOOL

Based on feedback from the user group sessions
discussed previously, it was clear that ASAT should
initially focus on ease of use and cost effectiveness.
The team developed two essential features to address
these user concerns: plug-and-play and a standard
data exchange infrastructure between core X2000
components. Additionally, the team wanted to use an
existing System Engineering modelling tool that
could provide the necessary capabilities addressed by
the users.

The Statemate Magnum tool set from I-Logix
allows System Engineers to quickly describe the
requirements and specification of their system in a

non-ambiguous graphical representation. This
graphical model is a ‘formal specification’ that
represents the functionality (Activity Chart) and
behaviour (Harel [1] Statecharts, truth tables, time-
continuous charts, flow charts and pseudo code) of
the system. Once the model is built, the tool can
check the specification for static correctness and
completeness issues.

Statemate fulfils the need to build executable
models by providing a powerful simulation engine.
This allows the engineer to verify the dynamic system
behaviour. The tool can run test- or use-cases
through the model to fully validate that the system
accomplishes its purpose. The tool allows the
engineer to interact with the model through Statemate
Magnum’s graphical panels. These represent user
interfaces to the physical components of the system.

In addition, Statemate Magnum provides a
documentation tool to produce useful documentation
in text form. Finally, the tool can generate
behavioural ‘C’ and ADA code for a number of
different platforms.

For these reasons, and the fact that Statemate
Magnum had already provided valuable contributions
to the System Engineering process at JPL, the team
chose Statemate Magnum to be the primary
modelling engine for ASAT. Having selected the
tool set, the team looked at existing modelling
approaches.

Traditionally, the Jet Propulsion Laboratory has
adopted a component based approach that required
the user to define a set of explicit relationships
describing the very detailed interfaces between all
components used in the architecture model. Although
this approach is not incorrect, subsequent experience
has shown it is prohibitively time consuming as it
does not lend itself to rapid design trades that take
place in the architectural design phase.

A new approach was needed. This new approach
utilized a standard interface, communications
protocol, infrastructure support functionality, an
architecture configuration file, and scenario files to
drive architecture simulations.

The standard interface and protocol allow the
user to initially ignore explicit details of connecting
components. Implementation of the standard
interface and protocol raised the possibillity of a
common architecture for all component models.
Every component model in ASAT consists of three
layers. The ASAT IF layer contains all functionality
to allow plug-and-play between components. The
Architectural IF layer contains all interface related
functionality required to place the specific component
in an architecture, such as parallell to serial
conversion. The Component layer contains all
functionality of the actual component. For example,
consider the implementation of the IEEE 1394 serial
bus as an ASAT component. The ASAT IF layer is

as described above, the Architectural IF layer
contains JPL developed hardware to interface the
1394 bus, the PCI bus, and the 1°C bus, and the
Component layer contains the implementation of the
IEEE 1394 standard.

Figure 3 depicts a prototypical ASAT component
and communication between the its three layers.

! L L4 :
: -~ S - B
' R4 e !
: - = L
' . . =
4 | e [y
I - e N -
) g i e P
™ e —» — oy
e T CRPONERT — g T
v A iR =
: 2 ; oA i
i A Lo
z 2
pag Tt
T o
c -

)
L
Figure 3: A standard ASAT component

implementating the interface layering
approach

The infrastructure support functionality provides
the user with the development enviroment in which
architecture models are developed and interfaced.
The architecture configuration file defines how
components are connected to each other. This means
that a wsable architecture is fully defined by a
collection of components (the architecture graphical
model) and a configuration file. This also means that
multiple architectures can use the same graphical
model and different configuration files. At the
beginning of a simulation run, the components will
automatically determine how they are connected and
interact with each other. The integrated architecture
model will be stimulated by a the scenrio file and any
measurements generated by the simulation will be
captured in a file for future analysis.

This approach makes the process of building and
testing an architecture into five steps:

1. Place existing components in the
architecture development environment

2. Connect each component to the architecture
support infrastructure

3. Build an architecture configuration file
describing component connectivity

4. Build scenario files to exercise the
architecture

5. Run the scenario files through the
architecture

Based on analysis of the simulation results the
user may repeat these five steps to consider trade-offs
between various architectures.

This approach has several benefits:

1. Reduces the time it takes to build an
avionics architecture

2. Reduces the time required for a given trade
study

3. Allows component models built in
compliance with ASAT standards to be
easily plugged into any of our architectures.

The advantage of the ASAT approach is that it
allows system engineers to focus on the architecture
of the system they are designing and evaluating rather
than getting caught up on low-level modelling and
tool-specific issues.

System engineers would and should not accept
component models unless they were known to be
correct. This makes model verification and validation
critical. Although the certification process is not
fully implemented, it has been developed and is
currently being tested. ASAT component models are
verified through systematically testing all features
and behaviours. Once models are proven to be
properly implemented (i.e. they do what we intended
them to do), it is necessary to validate that our models
yield accurate results. This is done by comparing the
results of the simulation against a hardware testbed.
The comparison test involves generating many
scenarios and running those scenarios through various
ASAT-generated architectures as well as their testbed
twins. Results are then compared, and discrepencies
addressed. Each new component model added to the
ASAT component suite is required to undergo this
verification and validation process.

RESULTS

The plug-and-play and common data exchange
infrastructure has proven to be very effective. Tables
2 and 3 show component development time X2000
architecture integration time. Table 2 shows that the
average time to build a component model was about
12 weeks (assuming the IEEE 1394 bus model will be
completed in two more months). Experience has
shown it would take at least that much time to
integrate components into architectures. However,
Table 3 shows that the integration time for the PCI
and 12C versions of the architecture model took 2 to 3
days. The bottom line: ASAT has shaved months off
the time it takes to build an avionics architecture
model.

PCI 12C |PROCE| IEEE 13%4a
SSOR

COMPONENT High Medium |Medium| Very High
COMPLEXITY
INTENDED High High |Medium| Very High
FIDELITY
LEARN/SPECT | 2-3 Weeks | 1 Month |2 Weeks| 3 Months
FICATION

TIME

BUILD TIME 1 Month |2 Months |3 Weeks 1 Month

(incomplete)

LEVEL OF Very
MODELLING |Experienced
EXPERTISE

Beginner | Expert Very
Experienced

Table 2: Component Model Development

Time
Communication |Integration| Test
among Modelling
Engineers
PCI 0 ™" 0.5 Day 1
Architecture Day
Example
2C 0.5 Days 1 Days 1.5
Architecture Days
Example
Table 3: X2000 Architecture Model
Integration Time
Note: The PCI model was used during the

development of the plug-and-play infrastructure.
Therefore, no learning of the PCI model is required in
the architecture example.

NEXT STEPS/FUTURE WORK

Work on ASAT is not complete, and future work
involves several important issues.

Although the plug-and-play infrastructure has
significantly reduced the time to integrate
components in an architecture model, the
development of individual models still takes several
months. Opportunities to reduce component
development cycle time must be found and exploited.

Plug-and-play is not fully developed. Ways to
standardize protocols between components in the
architecture layer, such as data buffering and
handshaking, must be investigated.

ASAT scenario files have been developed to be
simjlar to the output of existing spacecraft
simulations at the lab. In order to be more readily
accepted, ASAT must be able to be more tightly
linked with these simulations

Althought a verification and validation process
has been created and is being tested, it is in no way
complete. A component validation/certification
process must be completed, proven, and approved by
the user community to garner institutional acceptance
of ASAT.

A detailed analysis of the whole range of
effectiveness measures in the users’ areas of concern
is underway but by no means complete. This would
lead to a robust set of requirements of an integrated
system engineering tool such as ASAT.

CONCLUSION

In this paper, we have described the process of
system engineering in avionics design for spacecraft
and why a tool that can capture system dynamics is
required. We have identified users’ concerns about
the usefulness of ASAT and responded by
concentrating on tool ease of use and cost
effectiveness.. The application of our approach in the
architecture prototype demonstrates the efficancy of
the approach. Results show that plug-and-play
reduces architecture development and modification
time and the capture and demonstration of system
dynamics can lead to correct, highly detailed avionics
architecture models. Although a currently a proof of
concept, ASAT has demonstrated some promising
directions for system engineering at JPL.

ACKNOWLEDGMENT

This work has been funded by the Develop New
Product program at the Jet Propulsion Laboratory,
California Institute of Technology in association with
I-Logix Inc. We would also like to acknowledge and
thank Ted Bharami, Mike Dickerson, Wai-Chi Fang,
Sue Johnson, Mark Kordon, Carol Lo, Tyson Thomas
and Terry Wysocky for their contributions to the
ASAT project.

REFERENCES
[1] Harel, David: Statecharts, A visual Formalism for
complex systems in “Science of Computer
Programming”, 8 (1987) 231-274
[2] Tooraj Kia and Doug Bernard, Avionics Flight
System Engineering, JPL, 1998

