Application of a ϕ^4 Model to the Liquid-Gas Critical
Point of 3He

FANG ZHONG, INSEOB HAHN, M. BARMATZ, Jet
Propulsion Laboratory/Caltech, 4800 Oak Grove Dr. Pasadena, CA
91109, USA

A ϕ^4 model has been applied to the liquid-gas critical
point with the universal ratios of leading critical and correction
amplitudes built in. We have used this model to analyze recently obtained
heat capacity at constant volume, C_V and isothermal susceptibility, χ_T
data near the critical point of the pure 3He. The C_V, and χ_T measurements
were performed in the same sample cell along the critical isochore
over the reduced temperature range of $10^{-4} < |T/T_c - 1| < 10^{-1}$. This
RG-based crossover ϕ^4 model with a minimal set of three adjustable para-
parameters provides an excellent fit to the C_V and χ_T data both above and
below the critical point. The correlation length, ξ, calculated from the
ϕ^4 model with the three pre-determined parameters, agrees with previous experimental measurements over the entire crossover range. The
good agreement between the ϕ^4 model calculation and the experiment-
tal measurements extends beyond the theoretically predicted crossover
range.

1This work was supported by NASA.

Fang Zhong
fang@squid.jpl.nasa.gov
Jet Propulsion Laboratory/Caltech
4800 Oak Grove Dr. Pasadena, CA 91109, USA