Abstract to be Submitted to
CEC 2001

Performance, Reliability and Life Issues for Components of the Planck Sorption
Cooler*

R.C. BOWMAN, M. PRINA, M.E. SCHMELZEL, C.A. LINDENSMAITH, A. SIRBI, D.S.
BARBER, P. BHANDARI, and A. LOC
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

and G. MORGANTE
CNR-Te.S.R.E.
Bologna, Italy

The Jet Propulsion Laboratory (JPL) is developing continuous-duty hydrogen sorption
cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic
microwave background. In order to achieve an acceptable level of performance and robust
operation of these hydride refrigerators during flight, detailed investigations have been
performed on the sorbent materials and on critical hardware components. Summaries of
experimental results obtained for the various mechanical components, the hydride selected for
the compressors, and the hydride used for actuators for gas gap thermal switches are reported.
Critical mechanical components include check valves that isolate the high and the low-
pressure sides within the sorption compressor and are potential single-point failures as internal
leaks would short circuit hydrogen flow to the J-T expander. Check valves were operated
using hydrogen gas for over 40,000 pressure cycles at various orientations and temperatures
without leaks or other changes. All the filters that will be used to protect check valves and
Joule-Thomson (J-T) expander from particles were tested, as were the J-T and the liquid
storage reservoirs. The temperature gradients along the tubular heater elements for the
compressor beds were evaluated to assess their impact on the dynamics of compressor element
heating and hydrogen desorption. The durability and reliability of low-power heaters used for
the gas gap actuators were determined by accelerated temperature cycling. The sorbent
longevity has been verified for both the compressor alloy and the gas gap actuator alloy.

*This research was carried out by the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics and Space Administration.