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Abstract—  Automated  Prognostics and  Health
Management (PHM) is a requirement for advanced
military and commercial aircraft. PHM is the key to
achieving true condition-based maintenance. PHM
processing strategies include modules for the processing
of known nominal and fault conditions. However in real
operations there will also occur faults and other off-
nominal operations that were never anticipated nor ever
encountered before. We call these events anomalies.
Missing the presence of an anomaly could potentially be
catastrophic with the loss of the pilot and aircraft. Several
different anomaly detectors (ADs) have been developed
for advanced military aircraft to solve this problem.
Fusion of these ADs can significantly reduce false alarms
while at the same time substantially improving detection
performance. Fusion is a way of approaching the goal of
perfect detection with zero false alarms. We have
developed a neural net approach for performing AD
fusion. Presented here is a description of that technique
and the application to military aircraft subsystem data.
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2. 1. INTRODUCTION

Automated Prognostics and Health Management (PHM)
is a requirement for the advanced and commercial aircraft.
PHM is the key to achieving true condition-based
maintenance. A sophisticated PHM system will potentially
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save money, aircraft downtime, and lives by providing for
the right parts to be in the right place at the right time.

Table 1. Table of acronyms

ACRONYM MEANING
AD Anomaly detector
APU Auxiliary power unit
BEAM Generalized Cross-Signal Anomaly Detector
BU Basis unit
CD-RBF Class dependent — Radial basis function
EGT Exhaust gas temperature
FF Fuzzy factor
LMS Least mean square
MLP Multi-layer perceptron
NN Neural net
NNAD Neural net anomaly detector
PHM Prognostics and health management
RBF Radial basis function

Advanced aircraft PHM processing strategies include
modules for the detection, diagnosis and prognosis of
known fault conditions. However, in real operations,
faults and other off-nominal conditions that were never
anticipated nor encountered will also occur. We call these
events anomalies. Treatment of anomalies is particularly
important with new aircraft, but it is also a concern for
legacy aircraft. Failure to resolve an anomaly could be
catastrophic with the potential loss of the pilot and
aircraft. An important part of the overall system is the
inclusion of anomaly detection. The role of the Anomaly
Detector (AD) is to flag these unanticipated and never
before seen events.

In recent work for a new advanced military aircraft three
different AD methods have been developed to be included




on the aircraft. They are a neural net anomaly detector
(NNAD) [1,2] a generalized cross-signal anomaly detector
approach [3] (a component of BEAM) and a Hidden
Markov Model (HMM) approach [4]. Considered here is
the fusion of NNAD and the generalized cross-signal
anomaly detector to derive a single AD output.

Figure 1 Simplified example of the NNAD
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Fusion technology can combine the results from different
processing approaches (such as time-correlation statistics,
neural networks, hidden Markov models, and physical
models) resulting in superior results. Fusion of multiple
approaches has been demonstrated to significantly reduce
false alarms while at the same time substantially
improving detection and classification performance [5,6].
Each group’s AD focuses on different aspects of real data
signals when performing a detection. Sometimes the
detectors are ‘complimentary’ and support each other’s
detections.

In this case, fusion improves confidence of the detections
and thus not only improves detection performance but
reduces false alarms as well. However, sometimes a
particular detector focuses on an aspect of the signals not
considered by the other detectors. In this case it provides
the only anomaly detection. This expands the class of
signals that the fused AD is able to process. Fusion is a
way of approaching the goal of perfect detection with zero
false alarms.

Table 2 shows a summary of the expected response for the

different detectors being developed for advanced military
aircraft. The types of anomalies that can be expected are
listed on the left. The columns indicate the expected
response for each of the detectors; an ‘X’ indicating that
the detector is expected to work well. A ‘?” indicates the
response is not clearly known and depends on the nuances
of the data. The goal is to have at least one ‘X’ in each
row. This ensures that no class of anomaly will be missed.
Two or more X’s ensure increased probability of detection
while significantly reducing false alarms.

Table 2. Summary of expected AD detector response

Failure Type NNAD BFAM  HMM
Linear transform (gain) X ? X
Transient ? X X
New ‘mode’ X X X
Feedback ? X ?
Sensor failure (in range) X X ?
Sensor failure (noise) ? X ?
Uncorrelated signals X ? ?
Other ? ? ?

For advanced PHM we have developed a neural net
approach for fusion of input ADs. The neural net fuses the
individual AD detection outputs as well as “features” that
are generated internally by each of the detectors. The
result is a single detector output, which has
simultaneously improved detection statistics, significantly
reduced false alarm rates, and covers a wider range of
anomalies then seen by a single detector. In addition to the
detector output, the processing gives a measurement of the
“difference from nominal” for each of the signals that are
input to the individual ADs. These difference measures
are then passed down-stream to reasoners that isolate the
exact nature of the anomaly.

Presented here are details of the technique and results of
AD fusion applied to advanced military aircraft subsystem
data. A summary of the individual ADs areas of coverage,
synergy, strengths and weaknesses are discussed. Section
3 and 4 give brief summaries of the two anomaly detectors
used as inputs to the fusion neural net. Section 3 describes
the Neural Network Anomaly Detector (NNAD). The
NNAD is also used for performing the fusion processing.
Section 4 describes the Generalized Cross-Signal
Anomaly Detector (BEAM). Section 5 discusses fusion
processing using the neural net approach. Results from
application of the fusion processing to aircraft subsystem
data are presented in section 6. Section 7 contains a



summary and conclusions.

3. NEURAL NETWORK ANOMALY DETECTION

Presented here is a high level description of the neural net
anomaly detector (NNAD). Details of NNAD can be
found in a related paper [1]. The NNAD uses radial basis
function (RBF) neural nets (NN) to form a statistical
model of “nominal” data. As new data enters into the
system, it is compared to the RBF NN model. If data falls
within the boundaries defined by that model, then it is
flagged as “nominal”. If is does not, then it is flagged as
an “anomaly”. Figure 1 shows a simplified example of
that processing.

In Figure 1, the input signal data is 2 dimensional. The
RBF NN model of the nominal data has two basis
functions that are represented by the two ellipses in the
figure. Here the basis functions are Gaussian in shape to
give a continuous degree of membership measure from
each of the basis functions centers. The two ellipses
represent constant degree of membership contours that
may be used as a detection threshold.

In the figure 1, the small green and red circles represent
test samples from nominal and anomaly data respectively.
The green circles all fall inside of the detection threshold
so they are classified as ‘nominal’. The red circles fall
outside of the detection threshold and they are declared as
anomalies. One of the red circles is clearly far away from
the detection threshold ellipse and thus clearly an
anomaly. The other red circle is much closer. Is it indeed
an anomaly or is it a false alarm?

This describes the basic approach to anomaly detection
using the neural net. Of course with the real data we are
dealing with many more features (6-50 for the real aircraft
applications) and the number of basis functions,
particularly for transient data, is much larger (typically
80+) and the basis functions need not be Gaussian in
shape, so that the processing becomes more complicated.

Neural Networks

At the heart of the processing are the neural networks used
to form the model of nominal signal data. The particular
neural net we used is the Radial Basis Function (RBF)
neural network (NN) [7,8]. The RBF NN is essentially a
nearest neighbor type of classifier. Thus it has several
properties that make it ideal for performing anomaly
detection. These are not found with multi-layer perceptron
neural networks.

The architecture for the standard RBF NN is shown in
Figure 2. There are two steps involved with “training” the

RBF neural network. The first step is clustering of the
input data used to form the hidden-layer basis unit
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functions (BUs). All of the input training vectors for all
classes are lumped together at this stage. The data is then
clustered into one of several candidate BUs using a
clustering algorithm such as the linear vector quantization
(LVQ) algorithm. There are a variety of techniques to
perform to perform this clustering that are included in our
program. We have found for anomaly detection the k-
means algorithm [9] gives good results in reasonable time.

Figure 2 Standard RBF Neural Net Architecture

For NNAD described here these basis functions take the
form of multidimensional Gaussian distribution functions.
The mean and variance of each dimension is estimated
from the data. Following clustering is a least mean-square
(LMS) weighting of the BU outputs to form the desired
function approximation for classification.

During clustering we force the basis units in the RBF NN
to be associated with only a single class of data. For the
NNAD only nominal data is used so that each of the BUs
1s used to represent some portion of the overall feature /
feature trajectory space. For transient data the number of
BUs can be quite large. However for general classification
this will include sets of basis units associated with
different known fault categories.

The output from the RBF NN can be determined in two
ways. The first is simply the final output of the neural net
as described above. The second is to select the basis unit
that has the maximum activation. The BU with the highest
activation will be the BU that’s “nearest” to the set of
input signals. This is possible because all of the BUs are
associated with only the nominal data class. For NNAD
we use both methods for getting the neural net output. The
LMS output is used for the overall detection and the
nearest basis unit is used for the individual signal
detections. In effect the RBF NN neural net is a nearest-
neighbor classifier with the BUs defining prototype
models for different segments of the signal data. As other



classes are added, additional BUs are added. These too
will be associated with just a single class. We call this
architecture a class dependent — radial basis function (CD-
RBF) neural net [1].

Compute Signal Distances

When a detection is made, the “off nominal” distance of
all the input signals is computed. Figure 3 shows an
example of how this processing is done for the two-signal
case. In figure 3 the red dot represents the test sample
under consideration. Note that no single signal needs to be
significantly off nominal for a detection to be made.
Rather it is the aggregate signal set that gives rise to the
detection.

All of the neural net models developed for the subsystem
data have between 6 and 100+ basis units. The first step in
the processing is to determine which of those basis units is
the “closest” to the sample point being tested. The
distance computed is the Mahalanobis distance to the each
of the clusters. The Mahalanobis distance is used as it
accounts for not only the centers of each of the basis units,
but also the spread. In Figure 3, the dark blue arrow
represents the basis unit that is closest to the sample point.
It is the BU that gives the largest output. This BU is
selected for the next step in the processing. The basis unit
is the most like the set of input signal in a nearest
neighbor sense, and thus gives rise to the minimum off
nominal distances. Selecting the closest basis unit for each
signal individually is not correct. The detection and
distance are a function of the set of signals.

NN = Model for Nominal Data

Mabhalanobis

Distance s, Mahalanobis

Figure 3 Off-nominal distance calculation

The distance is then computed for each of the individual
signals as the Mahalanobis distance from the center of the
basis function that was selected. In figure 3 the yellow
arrows in the figure indicate the distances for the two
input signals to the center of the nearest BU. The red
arrows represent the Mahalanobis distance that is
reported.

4. GENERALIZED CROSS-SIGNAL ANOMALY

DETECTION

This section briefly follows the mathematical outline
presented in [3], which describes a general method of
anomaly detection from time-correlated sensor data. The
method is applicable to a broad class of problems and is
designed to respond to any departure from normal
operation, including faults or events that lie outside the
training envelope.

The SIE, or System Invariance Estimator, is a statistical
process for examining multi-signal data that was
developed as part of the BEAM approach developed at
JPL [10]. As input, it receives multiple time-correlated
signals as well as a fixed invariant library constructed
during the training process (which is itself data-driven
using the same time-correlated signals). It returns the
following quantities:

Mode-specific coherence matrix

Event detection

Comparative anomaly detection

Anomaly isolation to specific signals
Distance measure of off-nominal behavior

As a first step of analysis, this computation makes a
decision whether or not a fault is present, and reduces the
search space of data to one or a few signals. Time markers
are included to indicate the onset of faulted data. These
conclusions, which can be drawn for nearly any system,
are then passed to other analysis components for further
feature extraction, correlation to discrete data events, and
interpretation.

To motivate a cross-signal approach, consider that any
continuously valued signal, provided it is deterministic,
can be expressed as a time-varying function of itself, other
signals, the environment, and noise. The process of
identifying faults in a particular signal is identical to that
of analyzing this function. Where the relationship is
constant, i.e. follows previous assumptions, we can
conclude that no physical change has taken place and the
signal is nominal.

However, the function is likely to be extremely complex
and nonlinear. Environmental variables may be
unmeasurable or unidentified. Lastly, the interaction
between signals may be largely unknown. For this reason
it is more efficient to study invariant features of the
signals rather than the entire problem.

Because we do have the different signal measurements
available, we can consider signal relationships separately



and effectively decouple the problem. A good candidate
feature is signal cross-correlation. By studying this or a
similar feature rather than the raw signals, we have
reduced our dependence on external factors and have
simplified the scope of the problem.

In the case of the SIE we will use a slightly different
feature across pairs of signals. We refer to this feature as
the coherence coefficient:

_ ICov(S i 1
h Max(Var(Si ), Var(Sj ))

i (1)

It is chosen instead of the ordinary coefficient of linear
correlation in order to take advantage of certain “nice”
mathematical properties. This coefficient, when
calculated for all possible pairs of N signals, describes an

NxN matrix of values. The matrix is referred to as the_

Coherence Matrix of the system.

The coherence matrix, when computed from live
streaming data, is an evolving object in time with
repeatable convergence rates. Study of these rates allows
us to segment the incoming data according to mode
switches, and to match the matrix against pre-computed
nominal data.

For the purpose of this discussion, a “Mode” refers to a
specific use or operation of the system in which the
coherence coefficients are steady. In other words, the
underlying physical relationships between parameters may
change, but should remain constant within a single mode.
These modes are determined from training data for the
purpose of detector optimization. Ordinarily they do
correspond to the more familiar “modes,” which represent
specific commands to or configurations of the system, but
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they need not be identical. Frequently such commands
will not appreciably alter the physics of the system, and no
special accounting is needed.

Comparison of the runtime coherence matrix to a pre-
computed, static library of coherence plots, taking into
account the convergence behavior of the computation, is
an effective means of anomaly detection and isolation to
one or more signals. The complete process is described
architecturally in Figure 4 below.

Unfortunately, this comparison is only meaningful if we
can guarantee our present coherence values do not reflect
mixed-mode data, and so some method of segmentation
must be found. For purposes of anomaly detection, mode
boundaries can be detected by monitoring the self-
consistency of the coherence coefficients. As each new
sample of data is included into the computation, a matrix
average for the resulting change is extracted and
compared against the expected convergence rate. A
change in the convergence rate implies a new mode has
been entered and the computation must be restarted.

Between detected mode transitions, the difference
between the computed and expected coherence allows us
to optimally distinguish between nominal and anomalous
conditions. Violation of this convergence relationship
indicates a shift in the underlying properties of the data,
which signifies the presence of an anomaly in the general
sense. The convergence rate of this relationship, used for
fault detection, is considerably slower than that for data
segmentation, though still fast enough to be practical.

Once a fault has been indicated, the next step is to isolate
the signals contributing to that fault. This is done using the
difference matrix, which is formed from the residuals
following coherence comparison against the library.

Figure 4: Coherence-Based Detector Architecture



An example illustration is given in Figures 5 through 8
below. In each of these figures, the signal number appears
on both X and Y axes, displaying the coherence
coefficient for all signal pairs. The coherence values vary
between O (causally disconnected) to 1 (causally
dependent). The difference matrix has values between —1
and 1, with positive values implying the current data
shows a loss in coherence compared to the training data.

Figure 5 Snapshot of Evolving Coherence

Given an anomaly affecting one signal, we expect to see

ELE] 8 ]
3

5 M5 A% W B
the correlation between it and all other signals diminish

compared to the expected values. There may be stronger
differences with certain pairs than others, but in general
all pairs including that signal will decrease. Visually this
leads to a characteristic “cross-hair” appearance in the
difference matrix. Additional noise, nonlinear behavior,
reduced response, sensor drift, and similar phenomena
that affect only a single signal will appear in this fashion.

Figure 6 Sample Library Coherence

In general, an anomaly will manifest as a decrease in
coherence between signal pairs. However, there are rare
cases where coherence will increase. Typically, this is not
system-wide but is isolated to a few specific pairs. Such
an increase indicates a new feedback relationship

occurring in the system, and merits special attention.

The method presented here is applicable to virtually any
system producing time-correlated sensor data. Training is
conducted using nominal data, or if desired matches can
be tested against fault data, should any be available. The
detector increases in accuracy as the number of sensors
increases; however, computational cost and mode
complexity eventually place a practical limit on the size of
the system to be treated. This method has been
successfully applied to systems as small as four sensors
and as complex as 1,600.

Figure 7 Difference Matrix

Another key virtue of this approach is its resilience in the
face of novelty. The coherence between signals is a very
repeatable property in general, especially as compared to
environmental variable or nonlinear terms in the signals
themselves. This repeatability allows us to quickly
determine whether or not the coherence is consistent with
any of the training data, and therefore can be used as an
efficient novelty detector, regardless of its cause.

5. FUSION PROCESSING

Fusion processing was performed using the neural net
anomaly detector (NNAD) described in section 2 above.
Figure 8 shows a high level flow diagram of the
processing. The major difference is that instead of using
measured sensor signals as input to the detector, the
outputs from the first stage detectors are used.

Outputs from NNAD include the detection flag (binary 0
or 1), the raw neural net output, and the off-nominal signal
distances for each of the input signals to the first stage of
processing. The detection flag equals 1 when nominal data
is detected as input to the first stage NNAD. It is O when
off nominal (i.e. an anomaly) is input. The raw neural net
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Figure 8 Fuston processing flow diagram

output is a continuous variable that goes approximately
between O and 1. In some sense it is a measure of how far
off nominal the input set of signals is. The set of off-
nominal distance measures gives the off-nominal distance
of each of the features individually.

Outputs from BEAM include the detection flag (binary O
or 1) and the off-nominal signal differences. The off-
nominal differences are essentially a coherence measure
and are naturally restricted to be between 0 and 1.

The off-nominal distance outputs from NNAD can be
between 0 and infinity. Those distances are normalized by
a hyperbolic tangent function prior to input to the fusion
net. This is done to restrict the value to be between 0 and
1 and to approximate the coherence measure that is output
by the BEAM processing.

All the first level anomaly detector outputs are merged
together to form a vector input to the fusion neural net.
Using these inputs processing by the fusion NN is exactly
as described for the standalone NNAD.

Generally the first level ADs can be run at a higher false

alarm rate then when they are run individually. This is
because we can rely on the fusion processing to remove
the false alarms. Running the first level ADs at a higher
false alarm rate also improves detection performance by
including detections that may not be seen when a smaller
false alarm rate is required. When training the NNAD we
typically allow for a 2% false alarm rate.

6. APPLICATION TO ADVANCED MILITARY

AIRCRAFT SUBSYSTEMS

Considered here is processing of two data sets that are
related to advanced military aircraft subsystems. One is
collected from the hydraulic system for the flight control
surfaces. The second is for the auxiliary power unit
(APU). Processing of each of the data sets with the
standalone NNAD processing is discussed in a companion
paper [2]. Processing of the hydraulic data by the
generalized Cross-Signal Anomaly Detector is described
in [3].



Hydraulic Data

s .
The hydraulic data used here consisted of seven different
data sets. Six of the data sets represented ‘nominal’ data.
The seventh data set is anomaly data. Turning off the
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accumulator in the hydraulic system created the ‘anomaly’
in the hydraulic system. The data sets represent different

Figure 9 Nominal hydraulic data fusion AD inputs

Figure 10 Nominal hydraulic data fusion AD outputs

levels of stick movement by the pilot. The movement
varies from ‘no movement’ to ‘severe’. There were 8
channels in the data that correspond to different pressure
measurements within the system.

Turning off the accumulator changes time constants in the
response of the system to pilot stick movements. This can
be seen visually as a change in the second order of the
statistics of the data. The nominal and anomaly data sets
are similar, varying possibly in their second order
statistics.

Five of the nominal data sets were used for training the

neural net anomaly detector. One of the nominal and the
anomaly data were used for testing the system

Figure 9 shows the inputs to the fusion anomaly detector.
The inputs are from nominal (normal) data. There are four
separate pictures in the figure. They correspond to:

o The detection flag input from the generalized
cross-signal anomaly detection (BEAM). That
signal is binary. A ‘1’ implies that the signal is
nominal. A ‘0’ that it is an anomaly. Here the
flag indicates that the data is nominal for the
duration of the signal.



o The detection flag and raw neural net outputs
from the neural net anomaly detector (NNAD).
The detection flag here is also a binary signal
similar to that of the BEAM output. The raw
neural net output is a continuous variable the
goes between ) and around 1 (it can be larger
then 1).

o BEAM off-nominal signal differences for all of
the signals input to the first level AD. The values
go between 0 and 1.

o NNAD off-nominal signal differences for all the
signals input to the first level NNAD detector.
Recall that these values have been normalized to
be between 0 and 1 as well. For both the BEAM
and NNAD off-nominal signal differences the
color coding indicates how far off-nominal the
signals are. The colors are saturated at 0.35 in the
plots. 0.35 corresponds to 2 sigma for the NNAD
off-nominal individual signal distances used for
the stand alone NNAD detector [2]. The
saturation threshold is only used for visualization
on the input plots shown in Figure 5. The full
range values are input to the fusion AD.

As seen in Figure 9, all the outputs from the first level
ADs are as expected for nominal data input to the system.

Figure 10 shows the outputs from the fusion AD for the
inputs shown in Figure 5. The fusion AD detector flag and
raw neural net output are shown in the left plot of Figure
10. As with the inputs the detection flag is binary; 1 for
nominal data and 0 for anomaly data. The raw neural net
output is a value between 0 and around 1. The second
portion of the figure shows the off nominal signal

differences for the all of the input signals input to the
fusion AD. As such channels 1 to 9 correspond to the
BEAM outputs. Channel 1 is the BEAM detection flag.
Channels 2 to 9 are for the off-nominal signal differences.

Channels 10 to 19 correspond to the first level NNAD
outputs. Channel 10 is the binary detection flag. Channel
11 is the raw neural net output. Channels 12 through 19
are for the individual signal outputs. Initially we were
considering merging the individual inputs to give a single
off-nominal distance measure for each of the original
input signals. However there is information to be gained
by keeping them separate due to the different properties of
the individual first level ADs.

Figure 11 shows the outputs from the first level ADs used
as inputs to the fusion AD when anomaly data (the
accumulators are turned off) are input to the fusion AD.

D Off-nominal signal differsnce



As seen in the figure, both the BEAM and NNAD
detectors now flag that an anomaly is present. Notice that
both detectors drop in and out of detection. This is as

expected as the anomaly is a function of the stick
movement by the pilot; the anomaly is transient in nature
and occurs following a stick movement. Also notice that
the input signals that have the largest off-nominal
distances correspond to each other.

Figure 12 shows the output from the fusion AD. As seen
the detector output is now almost continuously indicating
that anomaly is present. In addition the indicted signals
are consistent as well. The fusion of the two detectors has
reduced the dropping in and out of detection substantially.

Auxiliary Power Unit Data

The second data set processed was from an auxiliary
power unit (APU). That data contains several cuts of
nominal data as well as data that contains real anomalies.
Three nominal data sets were used for training. Testing
was performed on an independent anomaly data set. One
of the training data sets was used for the nominal results
presented below.

use for anomaly detection. 6 signal channels were selected
for input to the system. They are shown in Table 3. Figure
13 is an example of one of the data sets. As seen in the
plot the data is highly non-stationary.

Table 3 APU input signals.

CHANNEL DESCRIPTION
1 Shaft speed
2 Fuel flow
3 Oil temperature
4 Inlet temperature
5 Exhaust gas temperature (EGT)
6 Compressor Discharge Pressure

Figure 14 shows the outputs from the first level ADs that
form the input to the fusion AD when nominal data is
present at the input of the system. BEAM has ‘perfect’
detection results. NNAD has a couple of drop outs. Also
notice that the off-nominal signal differences are all with
in limits. This is as expected. However also notice that
with the exception of start-up transients, all the inputs to

There were a variéty of signals measured from the APU to

Figure 13 Example of APU data



the fusion neural net appear stationary. This is as expected

Figure 14 Nominal APU fusion AD inputs

as the first level ADs, when nominal data is input, have

ideal performance of a constant detector output of 1 and 0
off-nominal distance measure. This is true even when the
data is highly transient as seen in figure 13. The
architecture and processing required for the fusion NNAD
is substantially less then that required for the standalone
NNAD [2].

Figure 15 shows that output from the fuston processing for
nominal data input. As expected no anomalies are
detected and the off nominal

Figure 16 shows the inputs for processing of anomaly
APU data. The anomaly with this data was a faulty EGT
sensor. It gave in-range but anomalous readings.
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The outputs from the first level ADs are interesting.
Notice that BEAM does not detect the anomaly. This is
because the sensor reading, for this data, is uncorrelated
with the other signals being monitored; it does not fit the
assumptions of the signal properties that BEAM is based
on. However, the NNAD has a strong detection. Both the
raw neural net output and the detection flag are pegged at
‘0’. The off-nominal signal differences have the same
properties as the detections. In the NNAD off-nominal
signal differences the EGT channel has the biggest
difference (the thresholding for visualization in Figure 16
can not show this).



Figure 17 Anomaly APU fusion AD outputs

Figure 17 shows the output from the fusion processing. As
seen in the figure, the anomaly is detected. The signals
that indicted are those flagged by NNAD. This gives
additional information regarding which AD gave rise to
the detection and may offer additional information that
downstream reasoners may be able to use.

7. SUMMARY AND CONCLUSIONS

In this paper we have presented the results of fusing two
different anomaly detectors (ADs) together to form a
single AD output. The two input ADs are the Neural Net
Anomaly Detector (NNAD) [2] and the Generalized
Cross-Signal Anomaly Detector (sometimes called
BEAM) [3]. The two different ADs focus on different
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aspects of real data signals when performing their
individual detections.

Sometimes the detectors are ‘complimentary’ and support
each other’s detections. In this case fusion improves
confidence of the detections and thus not only improves
detection performance but reduces false alarms as well.

However, sometimes a particular detector focuses on an
aspect of the signals not considered by the other detectors.
In this case it provides the only anomaly detection. This
expands the class of signals that the fused AD is able to
process. Fusion is a way of approaching the utopian goal
of perfect detection with zero false alarms.
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