A Component Based Implementation of Agents and Brokers for Design
Coordination®

Dr. Richard Weidner
Jet Propulsion Laboratory
MS 168-522
4800 Oak Grove Drive
Pasadena, CA 91109
818-354-2135
Richard. Weidner @jpl.nasa.gov

Abstract—

NASA’s mission design coordination has been based on
expert opinion of parametric data presented in Excel or
PowerPoint. Common access is required to more powerful
design tools supporting performance simulation and
analysis. Components provide the means for in-expensively
adding the desired functionality.

An information exchange was developed to provide the
physical models required to perform performance analysis of
mission designs. The exchange product is continuous
polymorphic model data over finite time intervals. Using
DCOM components, information brokers were developed to
provide controlled access to the products. Each access is a
persistent contextual transaction specific to a design team.

Information agent DLL’s were developed to translate
information requests, search among the brokers, retrieve the
exchange products and ultimately generate high level model
information such as state or attitude. An in-process dual
component interface was developed to provide direct access
from office productivity tools to the agent DLL.’s.

TABLE OF CONTENTS

Coordinated Design
Information Exchange
Intelligent Agents

Information Brokers
Information Agents
Information Agent Components
Conclusion

Nowunkwn =

1. COORDINATED DESIGN

One of NASA’s on-going goals is to facilitate coordination
between the members of its mission teams. Coordination is
readily justified and actively pursued during the course of
gathering and analyzing science information. However, long
before that point, the spacecraft, its payload, and the mission
need to be designed to meet that science goal. Coordination
during the early design activities is as important.

! U.S. Government work not protected by U.S. copyright
2 Updated October 20, 2000

The Design Process

There is an on-going debate on what design entails. In one
view, design is the geometric description of the layout of
mechanical parts on a computer. Certainly Computer Aided
Design (CAD) tool manufacturers encourage this view.
Alternatively, a conceptual design is viewed as the paper
and pencil drawing that precedes CAD refinement. A third
and more expansive definition of design is as a process that
includes analysis, visualization, and verification of the
functional performance of the complete physical
specification of a mission and it’s constituent systems. In
this document design includes specification of the physical
parts, modeling of their performance characteristics,
simulation of the functional performance of the mission
system and refinement of the design. The process begins on
paper and culminates in generation of the physical
specifications based on analysis of the system’s ability to
meet the mission science goals.

With the simpler view of design as mechanical layout, a
limited number of people need to be involved in the
generation of a blueprint. In past NASA missions, the design
was captured on such paper products that were then mailed
between subsystem teams. A system engineering team was
charged with integrating the often-contradictory paper
products. Without functional simulation nobody knew if the
system met the ultimate goals. In particular, nobody could
tell if the subsystems would even be compatible with each
other.

Today CAD geometric information is available. More
complex design tools provide subsystem performance
analysis under hypothetical conditions. However, conflicts
still occur because the system integration seldom includes
performance analysis nor is the analysis performed with
accurate models of the environment in which the spacecraft
will be flown.

Based on experience with past missions, the more expansive
definition of design as a process is being pursued in NASA.

As a result, many more people are involved ranging from
system engineers and subsystem manufacturers through the

science investigators themselves. Thus collaboration is
critical to the design process. That collaboration entails the
physical specification as well as the modeling and
simulation of the function of that system in the intended
environment.

Ripples

In 1994, NASA’s Science Information Systems Program
(SISP) began applying the wealth of physical model
information available from past mission analysis efforts to
simulate future systems as a part of the mission design
process. Information technologies were evolved to facilitate
access to the space science data sets.

In 1998, the Next Generation Infrastructure (NGI) activity
of NASA’s Cross Enterprise Technology Development
Program was tasked to help provide the technologies
required to support mission team coordination. Emphasis
was placed on facilitating design coordination. Products
were developed to support all levels of the communication
infrastructure from low level network connectivity through
secure transmissions and ultimately to high-level network
objects.

In 1999, the Ripples task was initiated based on leveraged
support from SISP and NGI. Ripples was proposed to
develop infrastructure to support arrays of NT’s connected
as display arrays to support visualization of mission
simulation products. The infrastructure would support an
individual array as well as groups of these arrays connected
remotely around the country. This paper reports on the
products of the Ripples task.

User Resources

Design coordination of NASA missions consisted solely of
teleconferencing just three short years ago. The model for
the state of the art for current missions was taken from the
architectures used by JPL’s Project Design Center and from
the ambitious design team for NASA’s Intelligent Synthesis
Environment. Cross enterprise coordination between all 10
NASA centers was required to form ISE. These two
coordination activities was carried out across the country
through a networked set of Microsoft’s Office Productivity
Tools. The tools were limited to the simultaneous
presentation of viewgraphs on PC’s connected through the
network. Voice communication was supported by
conference calls on telephone.

No other common set of computer capabilities was available
across the participants. This fact along with past experience
with the other NASA Missions indicates that the de facto
standard for computer capability for mission teams is a
networked personal computer. Those personal computers are
most often laptop computers with limited screen space,
memory, disk, and processor. The teams also have high-end
computer resources. Many engineers have quite

sophisticated computers. However, they are not compatible
with the network collaboration tools (PowerPoint). Thus,
every one connected with NASA is currently using the
ubiquitous PC as the minimal standard for collaboration.

The Ripples task was proposed to provide the high-level
network objects required to work in this PC framework.
More capable computers, faster IT environments, and thus
more powerful engineering frameworks exist. However, the
primary goal was infrastructure to connect the complete
range of mission design teams. Thus, the products were
designed to make optimal use of the abilities of the PC
framework. Those abilities are focused around the
requirements of information exchange between the
members.

2: INFORMATION EXCHANGE

Coordination between a few members of a single company’s
design team is limited primarily by available technology.
However, NASA’s mission teams are composed of a diverse
group of people from multiple companies or NASA centers
each with their own interests. The members are
geographically distributed and represent a range of
backgrounds. Furthermore the endeavors are competed for
large amounts of money and prestige. Thus, the environment
for information exchange between the members is highly
constrained.

The most obvious and highly visible requirement for
information exchange is protection of the rights of the
involved members. That implies a complex security
arrangement. It also implies the exchange must be tailored
for each individual. Some individuals must have access to
some data but not to the information that could reflect on a
competing design. On the other hand some individuals may
sit simultaneously on competing teams and need clear
indication of the information that applies to each in order to
aid them in not sharing inadvertently.

The complexity of the security arrangement also lends itself
to other facets of design. Individual designs and the
information appropriate to that design process is contextual.
That is, diverse bits of information accumulate that are
appropriate to a single activity. The information systems that
access that information can and should benefit from the
contextual nature of the exchange.

The design activity also yields physical specifications that
are time independent. That is the design is not changing in
and of itself. In other words much of the design information
is persistent. The behavior of the system may be time
dependent but the specification does not change unless the
members actively change them.

Many individuals from different companies, universities,
NASA centers, and related institutions participate in the
development and production of subsystems flown on NASA

missions. The design activity should recognize that
information as well as mechanical parts might be provided
through competitive access. Thus the activity must provide
access to the various competitors just as in e-commerce.

3: INTELLIGENT AGENTS

The benefit of the World Wide Web has been to generate a
huge new commerce based on information technologies. The
Web is so large that companies have formed just to help find
information. These helper companies have primarily
provided access to their centralized search engines.

Experience with the search engines from the twenty or so
helper companies is not great. A typical search may yield the
desired content 30% of the time. The best success is with
commercial vendors of staple products such as roses, plane
tickets, and books. However, searches for more complex
items fail consistently. For example a search for vendors of
white “Elephant Ear” orchids would fail consistently though
there are literally hundreds of vendors on the web that sell
that color of phalaenopsis. ~However, with a bit of
intelligence the engines can be used to search for orchids
then phalaenopsis. Then just browsing for white varieties
will yield the desired result.

The combination of search capability with some intelligence
in software “agents” has been researched for years {1,2]. An
intelligent software agent is a virtual person that represents
the user in finding the information the user wants without
requiring the user to personally wade through all of the web

pages.

The intelligent agent is capable of understanding and
interacting with its environment on the behalf of its user, of
moving about the web, and of forming and executing
rudimentary decisions. Faced with an open Web the
intelligent agent shows great promise.

One subset of software agents is the information agent. The
information agent delivers useful information to the user.
The information agent may sit and winnow incoming
information or go out on the web and search for, access, and
return desired information.

This activity built an information agent to search for, access,
and return information about spacecraft trajectory,
spacecraft attitude, planet ephemerides, and planet
kinematics to be used in the simulation phase of the mission
design process. The information agent was built using
Microsoft COM components in order to work across the PC
platforms. The information agent was built with security,
individual tailoring, context, and persistence. The agent
would search specific sites with competitive brokers of
mission information. The agents are software structures that
provide access to the broker’s products. Thus it is first with
the brokers that the discussion continues.

4: INFORMATION BROKERS
Information Products

Simulated information predicts the ability of the mission to
achieve its science goals There is a great amount of
information available to indicate how a mission will be
performed.. The quantity and diversity of the information
led to the growth of standards (with emphasis on the plural
of standard.) There are more than nine different standard
data forms for specifying just the trajectory of a spacecraft.

The different forms vary not just in the format of the data
but also in the content. Including the position of the relative
reference body, trajectory data uses specifications from
NORAD’s modified Kepler equation coefficients to
Lagrange polynomial coefficients.

However, any single source will generate just one of the data
forms in a typical file. The user then requires knowledge of
the format of the file as well as the code to translate the
content into state vectors.

The combination of data sets from multiple sources is often
required to form the relative state vectors from a space
vehicle to a specific target (planet.) The state vectors are
often generated with respect to one reference but are desired
with respect to another reference. For example, state vectors
are often propagated with respect to the Solar Barycenter
during cruise. The position relative to a target then requires
translating the vector using the ephemerides of the target.
Multiple sources are used for the cruise data and the target
ephemerides. Any single program needs the ability to
recognize any of the different forms and extract the desired
product. Network objects can help provide this polymorphic
functionality.

DCOM Brokers

The Object Request Broker (ORB) called the Service
Control Manager (SCM) in DCOM spawns low level
processes and thereby instantiates components [3]. A higher-
level information object was developed from an out of
process component instantiated by DCOM. This higher-level
object serves the function of instantiating specific network
objects thus it is also called an information broker.

The function of the information broker is loosely modeled
after the JINI network service [4] though it is implemented
in C++ and DCOM. The JINI service has many superior
attributes for robustness and mobility. However, the
productivity tools currently used by NASA in design
coordination require a DCOM implementation instead of the
JAVA alternate architecture.

An information broker is simply a software program that
handles access requests to the one or more data sets
generated by that organization or individual. Therefore it is
a server. But, a broker also logs requests and develops a user

profile in order to help meet specific user needs. A typical
information broker for spacecraft state is shown in figure 1.

Information
Broker
Component

User
Profile

Polymorphic
Context File Reader DLL

Difference
Line
Files

Chebyshev
Coeff
Files

Figure 1: A Spacecraft State Broker

The broker handles identification and security appropriate to
the user profile. Thus, the broker is also contextual and
persistent by handling multiple requests from the same user
through time. The broker can provide a limited secure
environment on its local machine in order to handle ancillary
data access and decision making to assure the user that he is
getting the desired information.

Along with the broker component, the data supplier can
provide in-process components or dynamic link libraries to
read and interpret the raw products. Thus, the user need not
know the actual data format or the interpretation method.
The component handles both of those transparently and just
provides the end product information through the registered
interface.

A Spacecraft State Broker

For example, Spacecraft trajectory and planetary
ephemerides represent the continuous state of the bodies
using discrete datum. Interpolators and integrators are used
to generate actual state vectors from the datum. Thus, the
data are usually aggregated in segments representing a
period of time. The broker’s product is that segment of data
not the individual datum. Thus the interpretation of the
source format is transparent but the interpretation of the
segment is not.

The information broker was formed as an out-of-process
component accessed through Microsoft’s DCOM [2]. The
information broker hosts the user’s search requests and
forms the result product segment(s). It then returns the
segments through a component request using a custom
marshaler. [5]

The information broker provides two functional areas in the
interface. One area is used to set up the context of an
activity. It registers the specific data sets required by that
context. It also handles security for that set of data. The
second area is used to actually form the queries and return
the product segments. The context functional area is
persistent. The query/access functional area is logged but
has no persistent effect on future queries/accesses.

A dynamic linked library was built to handle local file
access to the mission data sets. The broker component then
used that DLL to access information from the data sets.
However, that is completely hidden by the component
interface. Thus, another broker component could use the
same interface but a different source data set and access
DLL.

Once the segments are copied across the network they are
cached in segment files. Thus, the user need not ask the
broker for the same data twice. Future queries may then
check the cache first before asking the broker component.
The same access DLL handled the original files and the
cache segment files. In this way a broker may request data
from another broker and cache the segments locally to meet
user needs. The same access DLL will transparently handle
both data sources for the broker.

An information broker handles only one type of information.
Thus, the interface is specific to the data. A segment of
trajectory information has a different interface than attitude
information that is interpreted and handled completely
differently. Furthermore, attitude information originates at
completely different organizations though it may wind up in
the same archive.

The broker grants access and logs activity. It may then be
used to provide accounting information for any transaction
charges due during the product exchange. Currently, most
information is exchanged but the cost is hidden in other very
limited budgets. The growth of brokers and transaction
commerce could free up the hidden charges and allow for
more comprehensive support.

The information agents interpret the segments using the
dynamically linked libraries (accessed through in-process
components) provided by the source provider. Thus data
segment and executable network objects are exchanged. The
object-oriented paradigm is obeyed with a network object
containing the data and the executable to access it through
the registered interface.

5: INFORMATION AGENTS

Information Agents represent the user in searching for
specific information among the products available from a set
of information brokers. Figure 2: illustrates an agent/broker
exchange using information broker components
implemented in DCOM.

Information
Agent DLL
User I
Custom
Marshaler
Network
e N\ {7 N
Custom Custom
Marshaler Marshaler oo
_ J _ J
Information Information
Broker Broker R
Supplier #1 Supplier #2

Figure 2: Agent - Broker Exchange

For this discussion a vehicle state vector is an n-tuple that
expresses the geometric (location, velocity, and/or
acceleration) relationship between one body and another in a
specific reference frame at a fixed time. An attitude
quaternion expresses the orientation of the vehicle’s
reference frame with respect to a standard reference frame.
During performance simulations a designer wishes to have
state vectors and attitude quaternions for a series of discrete
times in order to analyze the feasibility of mission goals.

An information agent has been built to collect and return
desired state vectors and attitude quaternions. The user
specifies the desired attributes of the vectors including
vehicle id, reference center, reference frame and time.
Similarly the user specifies the target body, reference frame
and time for the attitude quaternions. The agent performs the
search and returns the desired information.

An Information Agent DLL

The fastest interface available to a custom processing tool is
through Dynamic Link Libraries. Thus the primary interface
to the information agent is through an Application
Programmer’s Interface (API) to a set of individualized
DLL’s. For example an information agent DLL is written
specifically to access state vectors. Another information
agent DLL is written specifically to access attitude
information. Other agents return body kinematics

information and so on. Figure 3; illustrates the information
agent DLL architecture.

. Segment
Information Network
Agent DLL v.. Objects

LJ ..

Mission
Context

Broker
Component

File I/O,
Segment

Interpreter
DLL

Segment
Cache

Segment
Files

Segment
Files

Segment
Files

Figure 3: Information Agent DLL Architecture

The agents contain the interface to the broker components.
Thus the more demanding user never needs deal with
components directly. Similarly the supplier’s custom DLLs
that interpret a broker’s specific data type and format is
accessed through the agent DLL and thus is hidden from the
user.

Using a standard interface and polymorphic coding practice,
various broker’s DLL’s may be accessed without modifying
the original custom processing tool. Thus, multiple
individual suppliers may used to provide the desired
information.

For known suppliers, a standard file access library can be
used. For example, a polymorphic implementation that reads
and interprets the nine most common segments was formed
and dynamically linked into the agent DLL. The agent may
then search the network among the available brokers and
piece together the segments required for the desired
information. The segments are cached using the access
library. The cache segments are interpreted (i.e. interpolated
or integrated) using the same access library. The cache is not
destroyed between calls and thus the information is
persistent just as though it was stored in a persistent memory
structure.

The identification of source brokers and the cache files
containing segments returned from those brokers are logged.

The next time the user wants information the cache is
searched first to save network access delays. This modality
is frequently used since the users most often want geometric
state that is identical but only slightly later in time. Thus, the
segment access mechanism saves the most frequent network
access repetitions. The repeat accesses need not be made
within the same process and thus may be delayed as long as
the user wishes.

The access log is saved under a user-specified identification
number. Multiple identification number may be used for
different groups of accesses and their associated cache files.
Thus, the agents are contextual. A special context
(identification number zero) is used to indicate that no cache
is saved or searched.

There are two types of context. The first context describes
the individualized agent that contains brokers and the cached
files associated with them. The second context is the context
of the broker component. The later context is used to
describe the data sets appropriate to one or more users. The
second context identification number is often provided
through the broker component interface and is thus also
logged in the first context along with the other attributes
associated with that broker.

The more demanding user may use the agent DLL directly
and thus obtain the fastest access available on a Microsoft
operating system. However, other simpler users need to
access the information in more standard frameworks. Thus
an agent component is also available.

6: INFORMATION AGENT COMPONENTS

An information agent component’s main function is to
provide a standard interface between the agent DLL and the
standard frameworks such as Microsoft’s Excel. The
component uses a dual interface based on the built in
marshaler for in-process components. The standard
frameworks use Microsoft’s Visual Basic for Applications
(VBA). Thus the interface handles only the standard data
types available through VBA. These data types also include
VBA specific multi-byte character set strings and variants
(unions). [6]

Excel Worksheet
VBA

Agent Component
DLL and TLB

Information
Agent DLL

Figure 4: Information Agent Component

Figure 4: illustrates an information agent component. The
information agent component is just a simplified front end to
the information agent libraries. Another way of describing it
is as simply a standard interface or glue. Since the agent
DLL provides the functionality, the agent component can be
a simple in-process component. An alternate interface may
be created using Microsoft’s Active Template Library
(ATL) [7]. The ATL wizard is easily used. However
Microsoft’s products have limited support for templates and
should be used with caution. This activity therefore avoided
ATL.

Standard frameworks such as the interpretive office
productivity tools can do very few of the functions available
through a complex information agent API. The requests are
typically simple and the tools are relatively slow since the
information is presented directly to the user. Thus a greatly
simplified agent component was constructed based on that
limited functionality.

Individual components were built to provide transformations
between Gregorian calendar, barycenter dynamical time and
spacecraft clock (on-board counter). Components were also
built to access spacecraft state, spacecraft attitude, and
planet kinematics models. These later components provided
access to information agent DLLs and information broker
components.

7: CONCLUSION

Based on the limited resources available across a mission
design team, a data exchange was implemented in DCOM
using components. The exchange provides access to
distributed data sets using the e-commerce model used in the
World Wide Web.

Supply side servers were built using a transaction service
known as an information broker. The broker maintained
security and persistent, contextual user profiles to meet
individual needs. The broker was implemented as a remote
out of process executable component implemented in
DCOM.

The exchange products were low-level spacecraft trajectory
and attitude, and target ephemerides data segments. The
supplier provides file reader and interpreter (integrator)
dynamic link libraries to the client. Thus the formalism is of
network segment objects.

On the client side, information agents were implemented to
search for the appropriate segments from among the
available information brokers. Polymorphic DLL’s were
implemented to extract the appropriate state vectors and
attitude quaternions from the multiple low-level segments.

Higher-level agent components were implemented as DLL’s
with type libraries. The components are accessible from

standard office productivity tools such as Excel VBA. Thus,
every member of the design team can access the products.

Relatively little can be done with the information strictly
within the office productivity tools. However, those tools
provide much of the functionality used by the science and
spacecraft design teams. Decisions based on target range,
target image size, solar phase angle, visibility and such
rudimentary calculations are supported in the limited tools.

The office productivity tools also provide a standard
man/machine interface that is familiar to the team members.
Just as the components can be used to return simple
information, other components can extract parametric
information and drive background simulations. Thus the
information agents return information that then allows the
design team members to simply vary design parameters and
further drive simulations and analysis

Future efforts remain to develop the interface to drive
remote simulations from Excel. Similarly, a network monitor
is planned to keep track of the available brokers in a similar
architecture to that available through JINL.

ACKNOWLEDGEMENTS

This work was performed at the Jet Propulsion Laboratory
of the California Institute of Technology under one or more
contracts from NASA. The work was supported by the
Science Application Information Technology element of the
Science Information Systems Program of NASA’s Space
Science Enterprise and the Next Generation Infrastructure
element of NASA’s Cross Enterprise Technology Program.

REFERENCES

[1] Joseph P. Bigus and Jennifer Bigus, Constructing Intelligent
Agents with Java, New York: John Wiley & Sons, Inc., 1998.

[2] David Pallmann, Programming Bots, Spiders, and Intelligent
Agents in Microsoft Visual C++, Redmond, Washington:
Microsoft Press, 1999.

[3] Guy Eddon and Henry Eddon, Inside Distributed COM,
Redmond Washington: Microsoft Press, 1998.

[4] W. Keith Edwards, Core JINI, New Jersey, Prentice Hall
PTR, 1999.

[5] Al Major, COM IDL & Interface Design, Birmingham, UK:
Wrox Press Ltd, 1999.

[6] David Boctor, Microsoft Office 2000 Visual Basic for

Applications Fundamentals, Redmond, Washington: Microsoft
Press, 1999.

[7]1 George Shepherd and Brad King, Inside ATL, Redmond,
Washington: Microsoft Press, 1999.

Dr. Richard Weidner is the technical
group supervisor of the Mission
Simulation and Instrument Modeling
Group in the Observation Systems
Division at the Jet Propulsion
Laboratory. He has developed
information technology for NASA’s
Planetary Science Information Systems

Fiv

since 1981. He has developed IT for NASA s Navigation
Ancillary Information Facility, Planetary Data System, and
SETI Whole Sky Survey. He has developed information

technology products to support planetary mission
simulation including the Voyager, Galileo, Cassini,
Stardust, and Deep Space 1 missions He developed image
sequencing and presentation tools used to support Mars
Pathfinder. He has a PHDEE from Oklahoma State
University.

