Synthetic Environments for Simulated Missions

Robert Gaskell

M/S 301 -150

818-354-2116
Robert. Gaskell@jpl.nasa.gov

I

James B. Collier
M/S 126 - 234
818-354-3159
James.B.Collier@jpl.nasa.gov

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Laura Ekroot Husman
M/S 126 - 234
818-354-2244

Laura.Husman@jpl.nasa.gov

Abstract—Synthetic environments offer Space Flight
projects an opportunity to perform rapid, comprehensive,
and rigorous modeling of the critical elements of a mission
in order to compute quantitative measures of design
performance, associated risk, and actual mission utility
value. Significantly, these studies can be performed early in
the mission cycle. These synthetic terrains are generated on
parallel, high-performance computers and served to remote
simulations at near-interactive speeds. The terrain creation
uses a realistic sequence of physical phenomena such as
cratering and dusting and with parametric control of features
such as surface roughness and rock density. Terrain
resolution may be arbitrary but typically ranges from 0.01 to
10 meters. The terrain server has been used for two rover
simulations, one using the actual Sojourner autonomy flight
code, and the other a more general algorithm. Monte Carlo
studies of rover designs interacting with synthetic
environments were executed in parallel in order to quickly
compute performance statistics and risk estimates.

1. INTRODUCTION

The traditional flight project development approach results
in many independent, but nevertheless interacting, design
decisions for each of the various mission components and
these are usually each made on a qualitative, best educated
judgement basis. Using synthetic environments provides a
way to perform Monte Carlo experiments on very large
numbers of design combinations early in the mission cycle
in a wide variety of possible mission environments. This can
provide an understanding of design decisions and design
interaction on the whole system. Moreover, related Monte
Carlo experiments can easily provide perturbation analysis
of key mission design parameters which may be difficult or
impossible to perform analytically. The critical point here is
that numerical estimates of performance can be used
statistically to predict probability of mission success,
thereby providing a way to make important mission design
decisions quantitatively rather than qualitatively. Simulation
of the target environment is key.

Current technology allows for far greater simulation and

' 0-7803-6599-2/01/810.00 © 2001 [EEE

Richard L.Chen

M/S 300 - 320

818-354-1259
Richard.L.Chen@jpl.nasa.gov

modeling early in the design cycle. The ability to run and
test designs, algorithms and interfaces is indisputably critical
to mission success. When the simulation capability is agile
and can be run rapidly on parallel machines, additional value
is gained in numbers and types parameters that can be
explored early in the process. For example, a single
scenario of a rover of a given size, with a given navigation
algorithm, and a synthetic terrain with an expected rock
density is a good system test. [t can be compared to a
mechanical rover performing on earth in a rocky
playground. First, the ability to run the simulation many
times with different starting and ending locations will give
better confidence in the performance results. However,
many simulation runs on terrains with rock densities from
across the distribution of possible rock densities will give
better confidence in the variability of the performance with
environmental variations. The size and the navigation
algorithms used can also be varied. Agile simulation
allowing exploration of the design space, within a synthetic
environment that can vary across the environmental
uncertainty space will greatly enhance the mission design
and decision making.

The advanced engineering environment we have built
generates synthetic terrain on parallel, high-performance
computers and serves it at near- interactive speeds. The
terrain generation software realistically and consistently
models physical phenomena such as rocks, and craters at
arbitrary resolutions, typically ranging from 0.01 to 10
meters. Furthermore, those parameters and others such as
the rock and the crater density can be set by the user of this
software, which allows a client to tailor the synthetic terrain
for its own requirements.

Early applications of synthetic environments has been to
rover design since there are obvious problems in the design
of space borne rovers which make it an ideal candidate.
There is no way to test a Martian rover in the actual Martian
environment before the mission. Testing can be performed
on Earth before launch by finding similar physical areas or
constructing sites which are believed to approximate
Martian conditions. However, there will, in general, be only

a tew such physical test sites. Moreover. hardware always
appears late in the mission cycle which greatly limits the
time the rover can be tested. Moreover, there are never very
many of these expensive devices to test. As a result, a design
problem which appears late in the mission cycle may be very
hard to correct, especially since it is notoriously hard to
unbend metal. It is simply very difficuit to revisit and
modify early design decisions late in the development
process precisely when much more has been learned about
the functioning of the entire system.

The first client to use this environment was a simulation of
the Sojourner Rover, which created and navigated on a
simulated Martian terrain using the actual Sojourner flight
code. Large numbers of identical rovers having different
initial conditions executed in parallel and the resulting
Monte Carlo experiments provided performance statistics.
The rovers were asked to traverse terrain with different
levels of rock and crater density chosen to correspond to the
known conditions encountered by actual missions such as
Viking.

A second client was a newer navigation algorithm designed
originally as a replacement for the Sojourner but applicable
to a wider class of rovers. This simulation was far more
robust and included numerous runtime parameters such as
critical rover dimensions. Using Monte Carlo experiments,
this system easily supported perturbation studies of rover
design elements interacting with different simulated rover
environments.

Moreover, the environment well suited the new algorithm
since the terrain information included soil composition, in
this case either sand or rock. Simulation could, as a result,
be performed without introducing any specific sensor
models that would themselves affect the behavior of the
navigation algorithm.

Future work includes generating synthetic terrain that is an
elaboration of an actual location being considered as a
candidate mission target site. The latest available scientific
data typically has resolutions of at best 30m while rover and
landing simulations require resolutions on the order of 2cm.
However, this observational data can be used to constrain
the synthetic terrains which are generated so that they are
consistent with the known data. For example, the spacecraft
Mars Global Surveyor (MGS) provides image data, which
can be used to establish an upper bound on craters and
rocks, altimeter data, used to establish a sparse web of
accurate elevations, and albedo data. Image data from both
MGS and Viking can also be used with photoclinometry
algorithms to fill in estimated elevations and slope
variations.

The synthetic terrain environment will also expand to
provide a rich set of simulation services and easy
programming interfaces to make adopting this environment
an attractive and even dominant choice for a wide spectrum

of system modelers and designers.

2. THEORY OF SYNTHETIC TERRAIN GENERATION
2.1 Busic Structure

The artificial surfaces provided by the terrain server are
characterized by maps which give the elevation and albedo
at regularly spaced surface points, Other information, such
as dust characteristics and coverage, could be easily
included. For example, one additional map is used to keep
track of the fractional rock coverage, so that rocks need only
be added in the final stages of construcion.

Surfaces are built sequentially. A preexisting surface is acted
upon by a module representing some geological process
such as cratering, to produce a new surface. That surface can
then be acted upon by additional modules.

At any given resolution, the surface properties sampled at a
point are representative of that point, and not averaged over
a bin. This is an essential ingredient in the construction.
Higher resolution surfaces retain the subset of lower
resolution points, resulting in a consistent zooming behavior.

Each module alters the surface by proceeding from lower
resolution to higher. The surface points are classified
according to levels, with higher level points spaced further
apart. Each point, except for those at the highest level, has a
set of four higher level "parent" points which participate in
its alteration.

This computational structure{l] was designed so that a
portion of the surface could be constructed without building
the entire surface. Originally, this was required so that small
patches of surface, such as those seen by a rover, could be
computed "on the fly" at a resolution of a few millimeters.
The same structure allows for complete parallelization of the
construction.

2.2. Specific Processes

Surface texturing is accomplished by using stochastic
interpolation. The height values at the parent points are
averaged to give an initial height for the child, which lies at
the center of the four. To that initial height is added a
random variation, the amplitude of which is a function of the
spacing of the parents and of a random variable. The
precise form of the amplitude function determines the
roughness character of the surface.

Each point of the surface has its own random number
generator for producing these variations. This guarantees
that a higher resolution surface can be generated which is
entirely consistent with an embedded lower resolution one.
Although it has not been tried, there is no reason why the
parameters of the roughness function could not themselves
have a spatial dependence, allowing different areas of the
surface to have different values for initial roughness.

A totally artificial surface begins with a functional form for
the variation amplitude, and the heights at the four bounding
corners. The basic spacing of the points is arbitrary. An
interpolated surface begins with digital elevation and albedo
maps which define the basic scale to within a factor of a
power of two.

The initial surfaces are acted upon sequentially by modules
representing various geological processes, a good example
of which is cratering.

The primary cratering distribution is taken to be a power
law,
N=N,(D/Dy)*

where N is the number of craters per unit area with
diameters greater than D, and A ~ 2. Secondary cratering
can also be included, with parameters and cutoffs
determined by the primary diameter. The power law is
steeper for secondaries, with A ~ 3.5. Secondaries were
included to facilitate the study of saturation equilibrium in
cratering({2,3,4].

The first step in the cratering process is the assignment of
impact points, diameters, and times of impact. The level
structure of the surface plays an important role in this
construction. The array of points with levels > 24+ form a
grid with spacing 2% basic units. The subset of points with
level equal to 2k+1 divides the surface into diagonally
oriented squares with 2“! unit diagonals and centered at
those points. Each of these squares is cratered
independently, with craters ranging from some diameter Dy
10 2Dy=Dx.;. The diameter bin defined by Dy is somewhat
arbitrary, with larger values speeding up the overall
calculation. The only requirement is that the largest crater.
plus its ejecta blanket, should not be able to extend past the
adjoining squares.

The random variable associated with the central point
determines the distribution of diameters, impact centers and
impact times. Once these have been assigned, the craters are
ordered according to time, and the actual cratering can
begin. This is done one crater at a time, so that later craters
can impact on earlier ones.

The actual cratering process begins with the annihilation of
the affected area. Some high level points are retained, and a
new surface with its own roughness function is constructed.

The rock potential in the actual crater and most of the ejecta
blanket is zeroed out. The surface heights are then adjusted
according to a crater function that is bowl shaped with a
depth of 20% of the diameter, which rises above the initial
surface near the rim, and then decays in an ejecta blanket
that drops in thickness like the inverse cube of the distance
trom the center[5]. The total volume of the ejecta blanket is
equal to the volume excavated from the bowl. As the
diameter of the craters become larger, the bottoms become
flatter and their depths never exceed 6 km,

The tringes of the cjecta blunket are feathered into the
surrounding unaffected terrain. Finally, the rock potential is
enhanced to reflect those rocks produced by the cratering.
An exponential dropoft with distance is used, which
provides a good fit to the data[6}].

The addition of rocks is similar to cratering, except that
large rocks are added first. no attempt being made to time-
order their creation. The fraction of the surface covered by
rocks of diameter greater than D (in meters) is taken to be
(71
f=f,*exp(-qD)

where q=1.79+0.132/f,, and where f, the quantity carried by
the rock potential, represents the fractional coverage by all
rocks. This leads to a number density per km” of

N=(4x1 o"!n)*qf*ﬂ)*(e—x%(lﬁr)—) -El (qD))

for circular rocks. The actual rocks are oblong, and
randomly oriented, so the true fractional coverage may be
different from the input value. They have their own surface
texture and albedo. They tend to be higher when f; is larger,
reflecting that less of the rock is covered by dust.

2.3 Stereo-photoclinomerry

The goal of the current work is to enhance a preexisting
topographic and albedo map of a real Martian surface with
consistent subresolution terrain. To some extent, the trends
in roughness vs. scale can be extrapolated to smaller scales,
but this would ignore important structures, such as rocks,
which appear only in the very highest resolution images. To
some extent, thermal inertia data can give an estimate of the
fractional rock coverage. Still, it is essential that appropriate
geological input be available to limit the processes that
might be contributing.

The high resolution real surfaces which will form the
starting point for the subresolution extrapolations will be
created using a form of enhanced stereo-photoclinometry

Fionee |

which has been developed over the last few years. The initial
work was done during Mars precision landing studics, but
the procedure has been refined in small body analysis for
optical navigation. In figure 1, an image made from digital
elevation and albedo maps derived from Viking imagery is
compared with a portion of a MGS wide angle image in
Gusev crater.

The starting point for this procedure is a set of images which
have been registered to subpixel accuracy, a good camera
model, and a good knowledge of body-fixed spacecraft
(camera) location or of camera pointing. The very
procedures used for stereo-photoclinometry were originally
developed for alignment of landmarks, typically to 0.2
pixels rms[8], and the registration of images, typically to a
few hundredths of a pixel.

Once the images have been aligned, portions of the surface
can be extracted from the imaging data and projected into
the same coordinate system, usually south, east and vertical
in a body-fixed frame. Of course, since the vertical location
of the surface patch is unknown, some initial work must be
done to align the centers, just as was done for the landmarks.

The next step is the determination of the height of each point
of the extracted map relative to the defining coordinate
system. Using the brightnesses of each point in each
projected image, the slopes and albedos are determined in a
least squares fit. The slopes are integrated, gradually
winding out from the center, to determine the height of each
projected point. Up to 450 paths are used in each
integration to average down the errors. As the height
estimates improve, further projections of the images are
made. The solutions for slope and albedo become sharper,
and the integrations more reliable.

If the imaging data were perfect, and if the photometric
properties of the surface were precisely known, integration
of the slopes would probably be sufficient. Unfortunately,
this is not the case, although a 35% Lambertian, 65%
Lommel-Seeliger model seems to mimic the surface
photometrics pretty well. The slopes and albedos determined
during the previous stage can be used to predict the images
seen in each camera and sun location. Significant portions
of these predicted images can be correlated with the actual
images to determine the locations of those portions
stereographically. The heights of these stereo points are
used to constrain the slope integration.

This technique allows one to obtain elevation and albedo
maps at a resolution nearly as good as the imaging itself,
much bettrer than stereo alone. Because albedo is also
determined, at least three images at different camera and/or
sun angles are needed. Since the stereo pairs provided by
Mars Global Surveyor are not sufficient, they will be
supplemented by Viking Orbiter frames. In addition,
MOLA data will be used to augment the stereo points during
the high resolution integrations.

3. SYNTHETIC ENVIRONMENT PACKAGE

The synthetic terrain environment package consists of three
software components: a terrain generator, a terrain server,
and a terrain client. The generator, based on the theoretical
work in the previous section generates synthetic terrain. The
server manages these terrains and serves portions of them on
demand to remote simulation clients such as a rover
simulator.

3.1 Terrain Generator

The most important component of the synthetic terrain
environment is the terrain generator software system whose
theory is described in section 2. Its features include detailed
modeling of physical phenomena, fractal-based algorithms,
and parallelized execution for rapid generation

The user may control the terrain generator by specifying the
physical phenomena which should occur to shape the
surface, the order in which these phenomena occur, and
critical parameters constraining these phenomena. For
example, the caller could request:
1. abase terrain sloped toward the southeast, then
2. rocks randomly distributed with a density of 17.6% (the
same as the density at the Viking Il landing site), and
finally
3. craters having diameters between 10 and 1000 meters.
The algorithms of the generator are based on fractals. This
results in any piece of terrain having consistent features
regardless of the resolution. For example, at a resolution of
0.01 meters, the terrain generator may place a 2-meter rock
at 5 meters north and 3 meters east of the origin. If so, the
terrain generator would still place a 2-meter rock at that
location even if re-run at a resolution of 1.0 meters, though
the rock would occupy fewer pixels.

The original version of this program was a suite of multiple
programs written by Dr. Robert Gaskell. These have been
integrated into a single program which executes in parallel.
This parallel version executed on a multiprocessor
supercomputer can result in a reduction of the terrain
generation time by up to 98%.

3.2 Terrain Server

The first use of the terrain generator as part of a synthetic
environment was for Monte Carlo simulations of the Mars
Pathfinder rover. This predated the creation of the terrain
server and client. The simulations of the rover's autonomous
navigation syvstem ran successfully but quite slowly on a
single processor workstation. For each discrete rover
motion (which cannot exceed 65mm), the terrain generator
was executed even though the rover's position stayed well
within the previously generated patch.

The terrain server was created to reduce the execution time
for simulations by eliminating the recomputation of terrain.

When a client requests a terrain patch, the server checks the
directory for the library of already generated terrain. This
directory is referred to as the metadata. If the terrain already
exists, the requested patch is returned. [f not, then the
requested patch is generated and added to the the metadata
directory before being returned.

Besides returning existing terrain, the server can also
perform some simple image processing in order to do the
following: bi-linearly interpolate between pixels, rotate or
flip terrain, and down-sample pixels. Interpolation has been
used by rover simulators that can physically move in smaller
increments than the resolution of their sensors. Rotating and
flipping is used by clients that request different coordinate
systems. Down-sampling has been used by a spacecraft
entry, descent, and landing simulation (EDL), in which the
resolution of the spacecraft sensors changes based on its
altitude.

3.3 Terrain Client Interface

A client application accesses the synthetic terrain
environment through a standard library of functions or APL
These functions automatically connect the client to the
remote terrain server and manage the communication with
this server.

The primary goal was to keep the interface simple. A client
can recover most of the terrain information it needs through
calling a single function, getDEM(), which takes location,
size, and phenomena as inputs and provides a digital
elevation map (DEM) as output. There are additional entry
points such as one to return the albedo.

If a client requests a patch that the terrain server does not
have metadata for, the terrain server executes the terrain
generator for that patch and a large surrounding area. This
may take minutes, so the library offers the function pregen(),
which allows a client to tell the server to generate terrain in
advance.

3.4 Future Work

The most important work would be to incorporate future
work by Dr. Gaskell into this environment, such that the
environment as a whole would still appear to be automated
and seamless to any client.

The terrain data that a client can access currently consists of
an elevation map, an albedo map, and an optional grayscale
image. The terrain generator currently generates all three.
Since generating the image consumes most of the
computation time, the parallelization of this component my
be significantly modified. An alternative is to create models
of specific terrain sensors such as a laser ranger or a CCD.
In order to simulate the scientific activity of a rover it may
become important to return additional information about the
terrain surface such as a classification map; for example, the
geologic composition of the terrain pixel by pixel.

4. ROVER SIMULATIONS AS EXAMPLE CLIENTS

ldeal applications for the synthetic environments described
above are the simulations for the study of rover navigation
algorithms on the Martian surface are The actual flight code
or candidate flight code can be used directly in the
simulation. Error sources can be controlled or entirely
eliminated from sensor input so that the "pure” navigation
algorithm can be studied. Similarly, error sources in the
rover motion can also be controlled or entirely eliminated.

4.1 Performance metric

Rovers are placed on the synthetic terrain and given another
location as a goal to reach. As a metric of performance for
this task we used the linear distance of the goal from the
start location divided by the actual distance traveled by the
rover to reach this goal. This is a measure of rover
efficiency. Clearly efficiency is always some value between
0 and | where 1 is the best possible performance and 0 is the
worst. This is a useful metric since rover power is limited as
is the expected life time of the rover in the martian
environment.

4.2 Sojourner algorithms

The first application of synthetic environments was a test of
the autonomous Martian surface operation of the Sojourner
behavior-based[9-12] rover navigation algorithm developed
at JPL by Jack Morrisson.
The high level structure of the rover simulation system is the
following:
1. The rover requests a small patch of synthetic terrain
immediately around the rover using Chen's Terrain
Server. The size of this patch depends on the sensing
distance of the rover. For Sojourner this distance is a
few meters. A terrain resolution of 2 cm was selected as
being adequate for describing a surface appropriate for
driving a rover.
A model of a sensor senses the surrounding synthetic
terrain. For Sojourner this was a set of 20 laser ranging
devices and a tilt sensor.
The input sensor data is processed to create an internal
model of the surrounding terrain. This model usually
includes an estimate of a digital elevation map for the
surrounding terrain. Salient characteristics are extracted
from this internal terrain model for the use of the
navigation algorithm. For Sojourner the orientation of
the rover received from the tilt sensor and the 20 ranges
comprised the data required by the navigation
algorithm.

4. A rover navigation algorithm takes the sensed terrain
characteristics as input, combines this with its current
internal state, and computes a new state. The new state
may include the output of a move command for the
external rover. The new state could also be the
determination that the rover has arrived at its goal state,
in which case the rover stops. or it could be a call for

84

(V8]

help sent to a remote operator on Earth. In general, the
output is a command to turn right or left and/or move
forward or backward. For the Sojourner simulation, the
navigation algorithm wused was the actual Mars
Pathfinder flight code.

The rover executes the output rover motion command
and is now in a new location on the synthetic terrain.
The cycle can now repeat with step 1.

th

It is important to realize that while all other parts of the
system are simulations, the navigation component is the
actual flight software. Thus this approach provides a way to
perform orders of magnitude more trials on flight software
than could possibly be achieved using physical rovers.

A standard test used in our early simulations was to start all
rovers distributed evenly about a unit circle of radius 25
meters with the center of the circle as the common goal. An
initial single processor implementation executing one rover
case at a time and generating synthetic terrain as needed
required approximately 2 months to perform a Monte Carlo
experiment sufficient to produce meaningful statistics. The
introduction of rapid synthetic terrain on demand using the
Synthetic Terrain Environment server and the parallel
execution of all rovers simultaneously on a 256 node
supercomputer can now execute a 100 rover Monte Carlo
experiment in about 30 minutes.

When executed on Viking I rock density, 17.6%, rover
efficiency varied from 0.280 (89.3 meters traveled) to .0277
(902.5 meters traveled) with an average efficiency of 0.0893
(280 meters traveled). It should be remembered that the
Sojourner algorithm was never designed for autonomous
execution and the autonomous experiment planned for the
end of the mission was canceled due to loss of contact with
the rover.

We also performed similar experiments using rock densities
of 6.9%, 8.8%, and 11.8%. The qualitative assessment that
rovers will perform better on a lower rock density was
certainly confirmed but the quantitative evidence indicated
that the variance in rover behavior was unacceptably high
except for the 6.9% density surface.

We next performed simulation experiments using a second
generation navigation algorithm designed by Marcel
Schoppers of JPL as a replacement for the Sojourner
algorithm.

The high level structure of the Marcel rover system is very
similar to the Sejourner rover system. Functionally, the only
differences are in steps 2 and 3. It is assumed here that there
is some "virtual sensor" which can see a rectangle of terrain
about Im x 2m in size in front of the rover where the 1m is
in the forward direction. This rectangle is subdivided into
four roughly equal rectangles from left to right in front of
the rover. The "virtual sensor" data is processed so that each
of these four rectangles is classified as either “safe" or

"unsafe” for the rover. These four bits of information are
the only data input to the navigation algorithm.

This classification process requires not only the digital
clevation map of this Im X 2m rectangle but also its
material composition pixel by pixel. The synthetic terrain
classifies each pixel as either sand or rock and returns this
information as part of the albedo classification. This means
that the "virtual sensor” processing performed to compute
these four bits of input to the rover navigation algorithm can
be achieved with perfect accuracy. As a result, we can study
the performance of this navigation algorithm in insolation
from any sensor error.

Monte Carlo experiments with this rover design on an 8.8%
rock density terrain resulted in an average efficiency of 0.89
(averaging 44.9meters to reach a goal 40meters away). The
user also has access to certain design parameters such as
critical rover dimensions and minimum hazard clearance as
well as certain navigation tuning parameters. This allows a
much wider scope for quantitative perturbation studies of the
effects of design changes on performance. In addition, it is
worth noting that there was an unexpected benefit of this
simulation system. When the first version was demonstrated
to the designer of the navigation algorithm, Marcel
Schoppers, he was immediately able to detect several
anomalies in the expected rover behavior and correct them
within a few minutes.

ACKNOWLEDGEMENTS

The authors would like to thank Marcel Schoppers for his
navigation algorithm, as well as guidance and energy.
Thanks also to Bob Shishko and his team who motivate and
interpret the Monte Carlo results into risk assessments.

This research we carried out at the Jet Propulsion
Laboratory, California Institute of Technology. Under a
contract with the National Aeronautics and Space
Administration.

REFERENCES

[1] R. W. Gaskell, "Martian Surface Simulations.” Journal
of Geophysical Research-Planets, 98:(E6), 11099-11103,
June 25, 1993.

[2] W. K. Hartmann, R. W. Gaskell, “Planetary cratering 2:
Studies of saturation equilibrium,” Meteoritics & Planetary
Science, 32:(1), 109-12{, January 1997,

[3] W. K. Hartmann, R. W. Gaskell, “Confirmation of
Saturation Equilibrium Conditions in Crater Populations,”
Abstracts of the 24th Lunar and Planetary Science
Conference, Houston, TX, p. 611, March 15-19, 1993,

[4] W. K. Hartmann, R. W. Gaskell, “Crater Saturation
Equilibrium in Ancient Uplands: Preliminary Results of

New Modelling.” Abstracts of the Lunar and Planetary
Science Conference, volume 23, page 495, 1992,

{5} H.J. Melosh, Cratering mechanics - observational,
experimental and theoretical, Annual Review of Earth and
Planetary Science, volume 8, 65-93, 1980.

[6]. Moore, et al., unpublished data. 1969.

{71 M. Golombek and D. Rapp. Size-frequency distribution
of rocks on Mars and Earth analog sites: Implications for
future landed missions, Journal of Geophysical Research,
volume 102, 4117-4129, 1997.

[8] R. W. Gaskell, “Digital Identification of Cartographic
Control Points,” Photogrammetric Engineering and Remote
Sensing, 34:(6), 723-727, Part I, June 1988.

[9] R. Brooks, “A layered control system for a mobile
robot.” [EEE Journal of Robotics and Automation 2:1 [4-
23, 1986.

{10] R. Brooks, J. Connell, and A. Flynn, “A mobile robot
with onboard parallel processor & large workspace arm,”
Proceedings AAAI National Conference 1986.

[I1] R. Brooks, “Intelligence without representation,”
Artificial Intelligence 47, 1991.

{12] R. Brooks, “Intelligence without reason,” Proceedings
[JCAI 569-595, 1991.

Bob Gaskell received his ScB in
Physics in 1967 from Brown
University, and his PhD, also in
Physics, in 1972 from McGill.
After several years of postdoctoral
work in high energy physics at
Carleton University —and the
University of Toronto, Bob
returned to McGill as a research
associate. In 1978, he moved to
Lafayette College as an assistant professor. During six
vears at Lafayette, his area of interest shified to group
theory, continuing his work with colleagues in Montreal.

In 1984, Bob joined the Optical Navigation group at JPL,
where he has been ever since. He divides his time between
developing methods for the precise determination of
planetary and small body shape and topography from
optical imagery, and generating simulated shapes and
surfaces for planets, asteroids and comets.

Bob is married, and has three children.

Jim Collier is a Senior Member of 5%
the Information Sciences and
Computer Science Staff at the Jet
Propulsion Laboratory. He hus
extensive experience in softwuare
design and development including
parallel applications, simulations,
SAR and AVIRIS processing, and
navigation. Early JPL work includes
cognizant programmer for JPL ,
mission navigation system resulting in numerous awards for
design and development of innovative software.
Mathematical research includes computer aided theorem
proving.

Laura Ekroot Husman is a
Technical Group Supervisor in the
Exploration Systems Autonomy
Section, Jet Propulsion Laboratory,
Pasadena. She has been at the Lab
since 1992 and has been working in
the Advanced Laboratory for
Parallel High-Performance
Applications (ALPHA) group since
1993, She received her B.S. from :

Caltech in 1986 and her M.S. (1987) and Ph.D. (1991)
degrees in Electrical Engineering from Stanford University.

Richard Chen received his BS in
EECS from UC Berkeley in 1987 and
his MS in CS from UCLA in 1991.
He has worked at JPL since 1989.
He was a member of the Parallel
Applications Technology group from
1998 to 2000 and is currently a
member of the Physical
Oceanography Distributed Active
Archive Center.

