Modeling of the Ultrasonic/Sonic Driller/Corer: USDC

S. Sherrit, X. Bao, Z. Chang, B.P. Dolgin, Y. Bar-Cohen
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
D. Pal, J. Kroh, T. Peterson
Cyberonics Inc., Erie, PA

Abstract—Future NASA missions to Mars require sampling techniques for in-situ analysis and/or sample return to Earth. One of the major limitations of sample collection on Mars and other low gravity environments using conventional drilling is the need for high axial force during drilling. In order to address this problem an ultrasonic/sonic drilling/coring (USDC) mechanism based on an ultrasonic horn driven by a piezoelectric stack has been developed. The horn drives a free mass, which resonates, between the horn and drill stem. Tests have shown that this device addresses some of the key challenges to this NASA objective of planetary in-situ analysis or sampling. The USDC is lightweight (450 g), requires low preload (< 5N) and can be driven at low power (5W). The device has been shown to drill various rocks including granite, diorite, basalt and limestone. Although the drill is driven electrically at 20 kHz, a substantial sub-harmonic acoustic component is found that is crucial to drilling performance. Models that explain this low frequency coupling in the horn, free mass, drill stem and rock will be presented.

I. INTRODUCTION

A schematic of the ultrasonic/sonic driller/corer (USDC) attached to a test rig is shown in Figure 1 along with a photograph of the device in the test rig. The device consists of three main parts: an ultrasonic actuator, a free mass and a drill stem. Circuit analysis of the actuator based on the equivalent circuit of a piezoelectric and acoustic elements as discussed by Mason[1],[2] was reported on previously[3]. The horn was found to have a resonance at 21.5 kHz and the free tip velocity at resonance was determined to be linear with respect to the applied voltage and ranged from 1 to 10 m/s depending on the acoustic load.

The vibrations of the horn tip excite the free mass, which resonates between the horn tip and the top of the drill stem at frequency of the order of 1000 Hz. Acoustic energy in the free mass resonator is transferred to the top of the drill stem and propagates to the bit/rock interface where the rock is excited past its ultimate strain and fractures. In order to determine the critical issues related to the control and optimization of the drill initial modeling of the acoustic interaction at the various interfaces of the drill are presented.

The three interfaces studied are: 1) the interaction of the horn tip with the free mass, 2) the interaction of the free mass with the drill stem and 3) the interaction of the base of the drill stem (bit) with the rock.

Figure 1. Photograph and Schematic of the Ultrasonic/Sonic Driller/Corer

Finally issues related to the integration of the various interface models will be discussed.

II. MODELING

In order to proceed with the modeling the velocity/displacement of the horn tip during operation is required. Since the velocity/displacement depends on the acoustic load a reasonable estimate of the velocity range can determined by calculating the horn tip velocity for the case where it is free and when the acoustic impedance is perfectly matched to produce maximum power in the acoustic load. The velocity of the tip as a function of the applied peak AC voltage is shown in Figure 2 for the two cases. The reasons for using the case where the acoustic load is ideal rather than clamped are twofold. Firstly the acoustic power transferred to the rock is substantial which means that horn is well matched to the rest of the acoustic elements and secondly in order for the device to operate efficiently a gap must be present which means that for a substantial portion of the time the tip is not in contact with
the free mass. For a peak AC voltage of 200 Volts on the drill the velocity is found to range between 1.25 m/s for the ideal load and 13.6 m/s for the free tip. The modeling of the interaction of the free mass can now be determined since the range of speeds of the horn tip have been set.

![Graph of Tip Velocity vs AC Peak Voltage](image1)

Figure 2. The range of speed for the horn tip for an ideal load and for the unloaded horn.

1) **Horn Tip – Free Mass Interaction**

The free mass is driven by the horn tip, which vibrates at resonance frequency. A schematic of the model is shown in Figure 3. The tip displacement is harmonic and is describe by

\[u = u_0 \cos(\omega t + \theta) \]

(1)

The velocity of the horn tip is found by taking the time derivative of the displacement and is

\[v = -\omega u_0 \sin(\omega t + \theta) \]

(2)

Assuming the energy loss and time duration of the impact is negligible and the mass of the horn is much larger than the free mass, we find using conservation of momentum and energy that

\[v_{mf} = v_{mi} + 2v \]

(3)

where \(v_{mi} \) is the free-mass velocity prior to interaction with horn and \(v_{mf} \) is the free mass velocity after interaction with the horn. A computer simulation model, which traces the positions of the free mass until it leaves the tip vibration range \((2u_0) \) was written. The routine calculates the free mass speed after interaction with the horn. By keeping track of the free mass velocity the routine allowed us to explore this driving mechanism as a function of the horn position as the free mass crosses the plane of full extension (phase). The speed of the free mass as it leaves the interaction region versus position of the horn (position of tip represented as a phase angle \(\theta = 0 \) at max displacement) is shown in Figure 4 for various ratios of \(v_{mf}/v \).

![Graph of Tip Velocity vs Position](image2)

Figure 4. The free mass velocity after interaction with the horn for \(v_{mf}/v = 0.2, 1, 2, 4 \)

![Scatter Plot](image3)

Figure 5. The free mass velocity/maximum tip velocity as a function of time.

For all cases there is a net increase in the free mass velocity after interaction with the horn when averaged over phase. The computer model traces the movements of the free-mass and the horn. The movement of the horn is due
to the reaction force on the horn tip and the force of gravity. In the calculation the free mass is set to 1 gram, the tip velocity amplitude is set to 1.26 m/s corresponding to displacement amplitude of 10 μm. The horn mass was 800 g. The energy loss of the free mass in each round trip is set as 75%. The simulation results shown in Figure 5 represent the ratio of the free mass velocity to the maximum horn tip velocity as a function of time. In addition the data was used to calculate the motion of the horn. The results show the random characteristics of the movement of the body of the horn. Figure 6 shows the horn tip position as a function of time. The motion is due to the impact interaction with the free mass.

![Figure 6](image1.png)

Figure 6. The horn position as a function of time determined from model.

![Figure 7](image2.png)

Figure 7. The horn position as a function of time determined from high-speed camera.

The size, frequency and randomness of the jumps are confirmed by experimental observations shown in Figure 7 of the horn tip determined using a high-speed camera.

3) Bit Rock Interaction

In order to better understand the fracture of rocks under impact loading from a drill or a corer, a finite element model was developed using ANSYS. For the purpose of simplifying the problem, the rock is modeled as a circular cylinder with bottom surface fixed and the drill/corer impacts at the center of the top surface. This simplification makes the problem axis-symmetric. By using the axis-symmetric elements available in ANSYS, the original three-dimensional problem is now reduced to a two-dimensions. The element size is made very fine near the drill/corer bit, and becomes coarser and coarser as it
goes further away from the bit. Figure 10 shows a typical mesh for the problem outlined above.

![Figure 10. The mesh used to solve the bit rock interaction.](image)

Preliminary results were derived by assuming that the circular cylinder is made of isotropic material with a Young’s modulus of 10 GPa and poisons ratio of 0.3. The impact loading from the drill has a peak value of 0.1 GPa and duration of 2.5 usec, as shown in Figure 9.

Contour maps of the maximum principal strain were plotted and used as indication of fracture of rocks. It also shows how the elastic waves propagate in the rock. Figures 11 show the contour maps for the cylinder for drilling and coring, respectively. The drill bit is 3 mm in diameter. The corer has an inner diameter of 2 mm and an outer diameter of 3 mm.

The results show qualitative features of the rocks fracture under ultrasonic drilling or coring. From Figure 11 we find that the highest principal strain occurs at the edge of the drill bit. Also, the highest principal strain appears at both the outer and inner edge of the corer. It implies that the fracture is likely going to happen at the edge, which is confirmed by viewing the high speed filming during drilling. By comparing the various strain profiles in Figure 11, we find that the maximum principal strain under coring is higher than under drilling, and the area of high principal strain under coring is also larger than under drilling. It implies that with the same outer diameter and under the same loading, a corer will drill faster than a solid drill of the same diameter. This is confirmed by experiments.

The results have show how drilling and coring can be achieved with little or no preload. The next challenge is to integrate each of the models to determine the limits and optimization of the USDC.

![Figure 11. The principle strain profile at various times after impact of the free mass on the drill stem for a drilling bit and a coring bit.](image)

IV. CONCLUSIONS

Models that explain the low frequency coupling of the USDC and the drilling under low axial preload have been presented. The results suggest a variety of avenues for optimization of the device. Current efforts are underway to integrate the various models to allow for the determination of system model with predictive and control abilities.

ACKNOWLEDGMENT

The authors would like to thank J.D. Carson for design and fabrication of the test apparatus. The research at the Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology, was carried out under a contract with the National Aeronautics Space Agency (NASA).

REFERENCES