Development of a Spaceborne Embedded Cluster

Daniel S. Katz, Paul L. Springer

JPL
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Autonomous Vehicles

High Data Rate Instruments
Development of a Spaceborne Embedded Cluster

REE Vision

Move Earth-based Scalable Supercomputing Technology into Space

Background

- Funded by Office of Space Science (Code S) as part of NASA’s High Performance Computing and Communications Program
- Started in FY1996

REE Impact on NASA and DOD Missions by FY05

Faster - Fly State-of-the-Art Commercial Computing Technologies within 18 months of availability on the ground

Better - Onboard computer operating at > 300MOPS/watt scalable to mission requirements (> 100x Mars Pathfinder power performance)

Cheaper - No high cost radiation hardened processors or special purpose architectures
Bandwidth & Latency

- Bandwidth is relatively constant, compared with increasing ability of sensors to produce data

- Latency
 - To Mars ranges from 3 minutes to 20 minutes one way
 - To L2 is about a minute one way
 - These times prohibit most automated response with ground-based computing in the loop
Development of a Spaceborne Embedded Cluster

Science Application Teams

• Background
 – Enabling new and better science is a primary goal for REE
 – A new generation of Mission Scientists is emerging which sees the value of significant onboard computing capability
 • Mission Scientists still want the most data bits possible sent back to the ground
 • But bandwidth to the ground is stagnant, while instrument data rates continue to rise dramatically
 • Ground operations costs are a major component of mission costs

• Science Application Teams chosen to:
 – Represent the diversity of NASA onboard computing of the future
 – Drive architecture and system software requirements
 – Demonstrate the benefit of highly capable computing onboard

• Science Application Teams will:
 – Prototype applications based on their mission concepts
 – Port and demonstrate applications on the 1st Generation Testbed
 – Use their experiences with REE to influence some of their mission design decisions
Development of a Spaceborne Embedded Cluster

Next Generation Space Telescope Team

REE Principle Investigator: Dr. John Mather, NGST Study Scientist

SCIENCE OBJECTIVES
- Study the birth of the first galaxies
- Determine the shape and fate of the universe
- Study formation of stars and planets
- Observe the chemical evolution of the universe
- Probe the nature of dark matter

TECHNOLOGY HIGHLIGHTS
- Precision deployable and inflatable structures
- Large, low area density cold active optics
- Removing cosmic ray interactions from CCD readouts
- Simulation based design
- Passive cooling
- Autonomous operations and onboard scheduling
REE Principal Investigator: Professor Peter Michelson, Stanford University, GLAST Principle Investigator

- GLAST will probe active galactic nuclei (spectral shape and cutoff), study gamma-ray pulsars, respond in real-time to gamma-ray bursts.
- GLAST will produce 5-10 Megabytes per second after sparse readout, mapping into 50 MIPS of computing requirements to meet the requirements for the baseline mission.
- New science addressed by GLAST focuses on transient events of a few days in AGNs and .01–100 seconds in gamma-ray bursts.
- REE could enable GLAST to produce 10x this data volume if it were to do most of its background discrimination in software. This would allow real-time identification of gamma-ray bursts, and permit the mission scientists to extract secondary science from the “background.”

GLAST is a high-energy gamma-ray observatory designed for making observations of celestial sources in the range from 10 MeV to 300 GeV.
Development of a Spaceborne Embedded Cluster

Orbiting Thermal Imaging Spectrometer

REE Principal Investigator - Alan Gillespie/U. Washington, Member of the ASTER Science Team

- Similar to Sacagawea:
 - Polar-orbiting high-resolution imaging infrared spectrometer (8-12 µm)
 - 64 bands of 12-bit data over a 21 swath at 30 m/pixel every 3.1 sec
 - Raw data rate of 30 MB/s
 - Designed to map emissivity of the Earth's surface to:
 - Map lithologic composition
 - Enable surface temperature recovery over all surfaces

- Onboard Processing
 - Characterize and compensate for atmospheric effects
 - Calculate land surface temperatures and emissivity spectra
 - Automatically convert the emissivity data to a thematic map
Development of a Spaceborne Embedded Cluster

Solar Terrestrial Probe Program

REE Principal Investigator - Steve Curtis/GSFC STPP Study Scientist

- Solar Terrestrial Probe Goal
 - Real-time quantitative understanding of the flow of energy, mass, momentum and radiation from the sun to the earth
 - Solar processes, flares and mass ejections
 - Interplanetary space and solar wind
 - Earth’s magnetosphere and upper atmosphere

- Mission Onboard Processing Applications - Data Reduction!
 - Magnetospheric Constellation Mission
 - 50-100 identical, spinning 10 kg spacecraft with on-board plasma analyzers (ions and electrons), a magnetometer and an electrometer
 - Compute moments of a sample plasma distribution function onboard
 - Low Frequency Radio Astronomy Imaging (ALFA/SIRA mission)
 - 16-64 formation flying spacecraft using interferometry to produce low frequency maps and two dimensional imaging of solar disturbances.
 - Compute pairs of time series (120+) to find the correlation maximum
Development of a Spaceborne Embedded Cluster

Autonomous Mars Rover Science

REE Principal Investigator: R. Steve Saunders/JPL Mars ‘01 Lander PI

- Autonomous optimal terrain navigation
 - Stereo vision
 - Path planning from collected data
 - Autonomous determination of experiment schedule
 - Opportunistic scheduling

- Autonomous Field Geology
 - “Computational Geologist”
 - The rover returns analysis - not only data
Radiation Environment for Applications

- **Model Inputs**
 - 3 orbit scenarios
 - Low Earth, 28° Inclination
 - Geosynchronous, nominal solar activity
 - Geosynchronous, JPL "design case" solar flare, 100 mil aluminum shielding
 - All testbed components
 - Latch, gate fault capture rates based on preliminary analysis of PPC750 radiation testing
 - Assume memory and L2 cache are protected by EDAC

- **Approximate predicted fault rates**
 - Per Node (2 PCC750s, 1 Node Controller, 1 Network Switch)
 - Actual errors realized is lower since some faults have no effect
 - For one application tested, ~70% of faults cause no error

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Total Faults/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO</td>
<td>~5</td>
</tr>
<tr>
<td>GEO, Nominal</td>
<td>~10</td>
</tr>
<tr>
<td>GEO, Flare</td>
<td>~100</td>
</tr>
</tbody>
</table>
Development of a Spaceborne Embedded Cluster

REE First Generation Testbed Capabilities

- ~ 35 Million Operations (peak) per second per watt of power consumed
 - > 10x the power performance on Mars Pathfinder
 - Includes ALL component power (processors, memory, network)
- Communication between processors at 132 MB/s
- 128 MB EDAC memory per node
- No single point of failure
- Automatic reconfiguration around failed components
- Fault injection capability for every software accessible component
 - Processors, Memory, Network
 - Replicates radiation induced fault environment in the lab for experimentation & software validation
- COTS real time OS (Lynx)
- COTS programming environment, tools

Onboard Applications execute on PPCs and communicate via MPI or sockets over Myrinet

Node Controller supports MPI, Sockets, Virtual memory & accelerated packets
Faults and Errors

- Radiation environment causes faults
 - Most (>99.9%) of faults are transient, single event upsets (SEUs)
- Faults cause errors
 - Good Errors
 - Cause the node to crash
 - Cause the application to crash
 - Cause the application to hang
 - Bad Errors
 - Change application data
 - Application may complete, but the output may be wrong
- System Software can detect the good errors
 - Restarting the application/rollback/reboot is acceptable
- Applications must detect bad errors
 - Using Algorithm-Based Fault Tolerance (ABFT), assertion checking, other techniques
Algorithm-Based Fault Tolerance

- Started in 1984 with Huang and Abraham
 - Initial motivation was systolic arrays
 - Abraham and his students continued to develop ABFT throughout 1980s
- Relationship to convolutional coding noticed
- Picked up in early 90s by a group of linear algebraists (Boley et al., Boley and Luk)
- ABFT techniques exist for many numerical algorithms
 - Matrix multiply, LU decomposition, QR decomposition, single value decomposition (SVD), fast Fourier transform (FFT)
 - Require an error tolerance
 - setting of this error tolerance involves a trade-off between missing errors and false positives
- ABFT can correct as well as detect errors
 - Currently, we are focusing on error detection, using result checking
 - If (transient) errors are detected, the routine is re-run
Receiver Operating Characteristic (ROC) curves (fault-detection rate vs. false alarm rate) for random matrices of bounded condition number ($< 10^8$), excluding faults of relative size $< 10^{-8}$
Development of a Spaceborne Embedded Cluster

ABFT Results (cont.)

- We have implemented a robust version of ScaLAPACK (on top of MPI) which detects errors using ABFT techniques
 - To the best of our knowledge, this is the first wrapping of a general purpose parallel library with an ABFT shell
 - Interface the same as standard ScaLAPACK with the addition of an extra error return code
 - For reasonable matrices, we can catch $>99\%$ ($>97\%$ for SVD) of significant errors with no false alarms

- **ABFT version of FFTW recently completed**
 - We can catch $>98\%$ of significant errors with no false alarms

- Testing to date has been algorithmic
- Intense fault-injection testing has just begun
Development of a Spaceborne Embedded Cluster

REE Results-to-Date

• Scalable applications have been delivered and used
 – 9 proposed applications have been delivered to JPL
 – 7 are currently running on an embedded system
 – We have shown throughput increases of 18x - 62x over current radiation hardened processors (RAD 6000)
 – We have demonstrated good scalability and speed-up on our initial embedded testbed.

• ABFT-wrapped libraries have been developed for linear algebra, FFT
 – Routines have been rigorously tested
 – Next step is for the applications to use these libraries under fault injection experiments

• A number of questions still need to be answered...
Open Questions

• What fault rates and fault effects will occur?
 – The radiation environment is known; understanding effects of environment has just been started

• What percentage of faults can be detected without replication?
 – Using ABFT and other techniques to check for incorrect answers

• What is the overhead and coverage of AFT?
 – Each technique (ABFT, signature checks, recovery blocks, etc.) should be tested to determine cost-benefit tradeoff
 – Heading towards offering a library of techniques to be chosen from my mission developers depending on reliability/power/timing tradeoffs

• Is checkpointing/rollback sufficient to recover from faults?
 – What’s the cost-benefit tradeoff?
 – Can the state of REE applications be made sufficiently small that the overhead of checkpointing is not prohibitive?