Atmospheric studies with the
Multi-angle Imaging SpectroRadiometer (MISR)

David J. Diner and the MISR Science Team
Jet Propulsion Laboratory, California Institute of Technology, MS 169-237, 4800 Oak Grove Drive, Pasadena, CA 91109
Telephone (818) 393-4619; Fax (818) 393-4619; E-mail David.J.Diner@jpl.nasa.gov

Abstract: Multi-angle Imaging SpectroRadiometer observations facilitate new atmospheric remote
sensing methods. Angular variation of radiometric and geometric scene attributes, in conjunction
with new algorithms, enables retrieval of aerosol properties, cloud heights, and cloud-tracked winds.

© 2000 Optical Society of America

OCIS codes: (280.1100) Aerosol detection; (290.1090) Aerosol and cloud effects

1. Introduction

The MISR instrument [1] was launched into polar Earth orbit aboard the Terra spacecraft on December 18, 1999 and
the instrument cover was opened on February 24, 2000. Terra is in a 16-day repeat 705-km sun-synchronous orbit, and
has approximately a 10:45 am equator crossing time on the descending node. MISR provides multiple-angle,
continuous imagery of the Earth in reflected sunlight. It uses nine separate charge coupled device (CCD)-based
pushbroom cameras to observe the Earth at nine discrete angles: one at nadir, plus eight other symmetrically placed
cameras that provide fore-aft observations with view angles, at the Earth's surface, of 26.1°, 45.6°, 60.0°, and 70.5°
relative to the local vertical. Imagination in four spectral bands (blue--446.4 nm, green--557.5 nm, red--671.7 nm, and
near-infrared--866.4 nm) is provided at each angle, yielding a total of 36 image channels (9 angles x 4 bands). The
spatial sampling is commandable, through flight software, to 275 m, 550 m, or 1.1 km. The nominal global observing
mode of the instrument provides 275-m sampling in all bands of the nadir camera and the red band of each of the off-
nadir cameras, and 1.1 km for the remaining 24 channels. It takes 7 minutes to observe any given scene at all 9 angles.
The images are linearly quantized to 14 bits, then square-root compressed to 12 bits before transmission. MISR
operates continuously on the day side of every Terra orbit.

MISR's cameras have progressively increasing focal lengths as the view angle increases in order to preserve cross-
track resolution as a function of angle. A nomenclature has been devised to provide a shorthand way of referring to
the individual cameras. The designation An is used for the nadir view; the forward-viewing four cameras are designated
A1, B1, C1, and D1 in order of increasing off-nadir angle; and the aftward-viewing bank is designated A2, B2, C2, and
D2. Here, A, B, C, D refer to the effective focal lengths of the camera lenses (approximately 59, 73, 95, and 124 mm,
respectively). The A1 design is used for the nadir as well as near-nadir cameras, providing slightly higher resolution in
the raw nadir camera imagery; however, the resampled and georectified data are placed on equal scale grids. On-board
calibration hardware provides high radiometric accuracy and stability of the data. This observing strategy enables the
use of radiative transfer theory and physically-based models to facilitate the retrieval of aerosol and cloud properties.

2. Data Processing

Raw MISR data undergo a series of processing steps in order to produce radiance imagery in preparation for
dgeophysical retrievals. First, the data are radiometrically scaled using a set of calibration coefficients for each detector
[2]. Then, using a geometrically calibrated camera model, image spatial co-registration is accomplished [3]. A
common grid for the georectified radiances is established to provide the required co-registration. Space-Oblique
Mercator (SOM) is used for this grid because its projection meridian nominally follows the spacecraft ground track and
a constant distance scale is preserved along that track, thus minimizing distortion and resampling effects. The map
resolution of the projection is matched to the horizontal sampling mode of each camera channel.

A separate projection is established for each of the paths of the 233 repeat orbits of the EOS 16-day cycle. Two types
of SOM projection are used for MISR data: terrain projection, in which the images are mapped to a surface defined by
a digital elevation model (DEM) in order to account for angle-dependent topographically induced misregistrations; and
ellipsoid projection, in which the images are mapped to a surface defined by the WGS84 ellipsoid. The former is used
for aerosol retrievals, since the retrieval algorithms require the surface-leaving radiances to correspond to the same
point on the surface terrain. Stereoscopic cloud height and wind retrievals make use of the ellipsoid-projected data.
3. Geophysical Retrievals

The retrieval of aerosol optical depth over land from space is a difficult challenge owing to the brightness and heterogeneity of the land surface. However, multi-angle imagery provides the opportunity to use the enhanced slant paths and variation in signal with angle to detect and characterize atmospheric hazes. One example of this capability is a set of images shown in Figure 1, obtained on March 6, 2000 over the eastern United States and encompassing Lake Ontario to Georgia. The left image is a nadir view, and the middle image is from camera Df. At the larger slant angle, the line-of-sight through the atmosphere is longer and a haze over the Appalachian Mountains is significantly more apparent. The right-hand image shows retrieved 558-nm optical depth. Over land, the retrieval utilizes spatial contrasts in the imagery and establishes a representation of the angular shape of the surface component of the reflectance using empirical orthogonal functions [4]. The aerosol optical depth is then derived from fitting the angular shape of the remaining signal to modeled atmospheric path radiances. Over water, a prescribed surface model is used in combination with models of atmospheric path radiance. Aerosol retrievals are performed on 17.6 x 17.6 km² regions, and thus at coarser resolution than the underlying imagery. Despite the use of completely different algorithms over land and water, the retrieved optical depth is roughly continuous across the land/water boundary at the lower right. Retrieved 558-nm optical depth in the hazier areas is ~0.2.

Figure 1. The eastern US, March 6, 2000. Left: Nadir top-of-atmosphere (TOA) image. Middle: Df TOA image. Right: Retrieved 558-nm aerosol optical depth field. North is at the top.

In studies of cloud-climate interactions, accurate cloud height is one of the principal characteristics required to model the three-dimensional field of radiative fluxes. In order to establish a classification scheme incorporating cloud altitudes, a reference level known as the Reflecting Level Reference Altitude is defined. The RLRA is the level found by matching features (or areas) with the greatest contrast in the near-nadir viewing directions. This corresponds to the main reflecting layer, which will typically be either the tops of clouds, or under clearer conditions, the surface. The RLRA is defined over areas measuring 2.2 x 2.2 km².

The algorithm for retrieving RLRA is stereophotogrammetric, and uses a combination of area and feature matching algorithms to measure the displacement between clouds from one MISR view to another. This displacement results from geometric parallax due to the cloud's height above the surface ellipsoid, plus actual motion driven by wind. Multiple views obtained from satellite altitude over a wide angular range provide the ability to separate the effects of wind displacement from height [5]. Winds are retrieved over mesoscale domains measuring 70.4 x 70.4 km². An
example retrieval is shown in Figure 2, derived from data acquired on August 21, 2000. The left image is a nadir view, and shows the eastern edge of Hurricane Debby in the mid-Atlantic. To the right of this image is the derived RLRA field. Brighter areas correspond to higher clouds. The rightmost image superimposes the retrieved wind vectors. The longest vector corresponds to the highest wind speed of ~ 30 m/sec.

![Image of Hurricane Debby](image)

Figure 2. Eastern edge of Hurricane Debby, August 21, 2000. Left: Nadir image. Middle: Retrieved RLRA field. Right: Retrieved cloud-tracked wind vectors. North is at the top.

4. Conclusions

New algorithms have been developed to capitalize on the unique nature of MISR data. These first-generation algorithms will likely be refined as a result of more experience and validation efforts. Data are processed and archived at the NASA Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov). Overall, MISR is performing superbly (see http://www-misr.jpl.nasa.gov for more information about the experiment and mission). This work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

5. References


