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Abstract

A family of upper bounds to error probabilities of coded systems on
the additive white Gaussian noise channel was recently proposed
by Divsalar [3]. Their calculation depends only on the weight
spectrum of the code words. We first elaborate upon these bounds
to show how they can be further tightened by using numerical in-
tegration instead of a Chernoff bound, and by reducing the num-
ber of code words to be included in the bound. Next, we extend
them to fading channels.

1 Introduction and motivation of the
work

During the years, much effort has been spent in the search
for close approximations to the error probability of systems
in which coding is used in conjunction with maximum-
likelihood decoding (here we are especially interested in
linear binary codes, so we shall restrict our attention to
these without any further stipulation). In many cases, the
union bound provides a useful tool for the prediction of sys-
tem performance at intermediate-to-high signal-to-noise ra-
tios (SNR). This is easy to compute, and requires only the
knowledge of the weight spectrum of the code; however,
it becomes too loose, and hence useless, when the SNR ap-
proaches the value at which the cutoff rate Ry of the channel
equals the code rate R..

The recent discovery of an easily decodable family of
codes with good error properties even beyond the chan-
nel cutoff rate, and close to capacity [2], has rekindled the
interest in bounds that overcome the Ry-limitation of the
union bound, while keeping the upsides of it. Specifically,
these new bounds should be easily computed, and should
depend only on the weight spectrum of the code: the latter
property is especially important in view of the fact that with
turbo codes only the weights, averaged with respect to the
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possible choices of the interleaver, are usually available. For
recent work in this area, see, for example, [4,6,7,8,9].

Of late, a new family of upper bounds was proposed
in [3]. This family turns out to yield the tightest known
approximation to the error probablhty of turbo codes w1th
large block length.

In this manuscript we elaborate on this family of bounds,
by showing how it can be further tightened through numer-
ical integration (to be used instead of Chernoff bounding)
and through riddance of a number of unnecessary terms.
Moreover, we extend these bounds to the fading channel.
The paper is organized as follows. In Section 2 we expound
the new bounds for the additive Gaussian noise (AWGN)
channel, and its improvements. In Section 3 we derive
bounds for the fading channel, while in Section 4 some ex-
amples of application are shown.

2 AWGN channel bounds

Consider transmission of a geometrically-uniform signal
constellation X, with |X| = M, over the AWGN channel,

- modeled in the form

Yy=9x+n (1)

where x, y, and n are n-dimensional real vectors; in partic-
ular, x € X denotes the transmitted signal vector, y the re-
ceived vector, n a random noise vector whose components
are Gaussian random variables with mean zero and com-
mon variance 1, and 7 is a known constant. We also assume
that the code word components take on values +1, so that
all signal vectors have equal energy
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With maximum-likelihood (ML) decoding, the word er-

ror probability when x was transmitted does not depend on
x due to our assumption of a geometrically-uniform con-



stellation. It can be written in the form

=P[U{x—>i}
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where {x — X} denote the “pairwise error event,” i.e., the
probability that when x is transmitted the distance between
the received vector y and X is smaller that the distance be-
tween y and x, that is,

Hy-xl<lly—x} 4

The union in (3) is extended to all signals vectors X # x.
Notice that the set of y such that {x — X} occurs is a half-
space in R™, the locus of the points whose distance from x
equals the distance from X.

The number of terms in the union of (3) can be reduced if
we remove all the pairwise error events that can be written
as unions of other events. In particular, the minimum num-
ber of terms occurs if we keep only the signal vectors x that
are defined as follows.

Define the Voronoi region of x as the set of vectors in the
Euclidean n-dimensional space R™ that are closest to x than
to any other X, that is

{x—x}2{y

VE{yeR :|y-x|sly-%|,VReX} ()
The Voronoi region is a convex polytope in R”, the inter-
section of the half-spaces described above. The number of
facets in this polytope is usually much lower that M: for this
reason it is convenient to remove the redundancy from (5)
and redefine V by using only the inequalities that are strictly
necessary. To do this, we define the set of (Voronoi) neigh-
bors of x as the minimal set N such that
V={yeR"* :|y—-x|<[y-X|, ¥XeN}  (6)
The vector x itself does not belong to N.
Based on this definition of N, we can rewrite the error
probability in the form

P(e)=P [ Uix- i}} @)

XeN

Now, the union includes only |N| terms, the minimum pos-
sible number.

For future reference, we can derive from (7) a “minimal”
union bound by writing

e)< Y P{x—%} ®)

XEN

A bound tighter than (8) can be obtained as follows. Let
d denote the generic Euclidean distance of X from x, and

partition N into equivalence classes of vectors with the same
value of d. Denote these by Ny, and write

]P’[U U {x—»i}j
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deD RENY
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deD
where D is the set of distances from x of the vectors in X,
and
eq 2 U {x — X} (10)
XEN,

is the probability that, when x is transmitted, at least one X
at distance d is nearer to y than x.

2.1 Characterizing N

The characterization of N is a well-studied problem (see,
e.g., [1]). Although it generally requires knowledge of the
code structure beyond its weight spectrum, useful bounds
are available. Let X be a linear block code with components
0,1 and parameters n, k. If w denotes the weight of the code
word X, and Wi, the minimum Hamming weight of the
code, then the following theorem [1] yields simple bounds
to N. Here we let x be the all-zero code word, so that the
Euclidean distance from x of a code word with Hamming
weight w is 2/w.

Theorem. For any binary linear block code

{ReEX:1<w < 2Wyin-1}CNC{XeX: 1 <w< n—k+1}

(11)
Moreover, if the weight w # 0 of X cannot be written as
w =1+ j, wherei > 1,75 > 1, and i, j are actual weights of
words of X, then X € N.

For example, as an immediate consequence of (11), for a lin-
ear block code we can rewrite (9) as

2v/n—k+1

Pe)< Y Pleg (12)
d=2

The bound above can be further tightened by using the rest
of the Theorem. An algorithm is also available [1] to derive
the elements of N if the code words can be listed. For ex-
ample, from tables in [1] we can infer that N for the (31, 21)
BCH code contains 107,198 words, while |X| = 2,097,152.
The number of words expurgated from the computation of
the bound may consequently be very large, especially when
the rate of the code is greater than 1/2 (see [1]).



We should also observe that the words excluded have
large distances (in fact, from the Theorem we see that all
the words not in N have a Hamming weight w > 2d,,):
thus, the effect of this expurgation would be especially felt
at low signal-to-noise ratios.

2.2 The new bound

We now compute an upper bound to P(e) based on (9). To
do this, use a technique advocated by Gallager in [5] and
express Pley] as

Ples] = Pleq, y € R] +Pleq, y ¢ R (13)

Further, observe that
Ples, y ¢ R < Ply ¢ & (14)

where for the RHS to be a good approximation of the LHS
one should choose R in such a way that the two regions
R (the complement of R in R™) and Jg zen,1X — X} have
about the same shape and size. In practice, the selection of
R should be guided by computational simplicity. The new
bound is based on the choice for R of an n-dimensional hy-
persphere centered at ynx and with radius /nR. The pa-
rameters 7 and R will be selected so as to obtain the tightest
possible bound (notice that in general 7 and R will depend
on d).
By using (14) in (13) we obtain the upper bound

Plea] < Ples, y € R+ Ply ¢ R] (15)

2.21 Computation of Ply ¢ R]

Let us compute the second term in the RHS of (15) first. We
have

P> (yx — ynax)? 2 nR?
k=1
- PW <0 (16)

Ply ¢ ®]

where we have defined the RV

W £ nR? =) " (yy ~ ynzi)? (17)

k=1

To calculate (16), or to approximate it, we first determine the
function

®(s) £ E[e*%] (18)

By observing that, under the assumption that x was trans-
mitted, we have y = yx + n, that the components of n are
independent RVs with mean zero and variance 1, and that

|| x ||I2= n, we obtain

n
@(3) = eSTIR2 H IE [e—g((l—n)7mk+nk)2]
k=1
snR? f:[ 1 _(1_17)2722%3/(23_1)
= e
\/23 —
= eSnR gn(’y) S,T]) (19)
where .
1 em}2.2 §—
9(77 s, 77) S \/is——Te (1—-n)*y*s/(2s-1) (20)

This converges in a vertical strip oy < a < a; of the com-
plex s-plane bounded by the closest poles of &(s).

The exact value of (16) and an upper bound can be deter-
mined.

2.2.2 Computation of Pleg, y € R]

We have
Pla,ye® = P| ) {x—>%} yer @1)
ReEN4
< Y Pl{x—%}, yeR
XEN,
= Y Plly-gl<ly-x|, yeR
XEN,
= Y Ply,x) <), ||y —mx|*<nR?
XeN,

The corresponding Chernoff bound takes the form

Ples, y € R < Aae ™ fi(y, r, )g™ Uy, mm)  (22)
where g( -, -, - ) was defined in (20), and

1 =22 (1—2sn?
f(’%&n)é me T (1=2em) (23)

Moreover, A4 is the number of code words at Hamming dis-
tance d from x. (For turbo codes, it will denote the average
number of code words over all possible interleavers.)

If we select the value of e"F’ that minimizes the Chernoff
bound, and we define for notational simplicity

Aly,mom) & £y, m)g™ 4y, ) (24)
B(v,s,m) £ g"(v,s,n) (25)

we obtain the neat bound
Blea] < "(FH) AT (3, 5, )B™F (v, 1y m)  (26)
where H(-) is the binary entropy function:
H(z) & —zlnz - (1 —z)In(1 — z). (27)



Some algebra is required to minimize the bound (26) with
respect to s, 7, and 7. We obtain

Pleq] < exp{H(p) — nE(~*/2, d/n, p)} (28)
where

1
E(,y2/2’ d/n, p) = —~—2—ln(1 —p+ pez(lnAd)/n)

1 ~?

+ —_—
1+(1+ L;_ee—z(lnAd)/n)l_:i-}iT/" 2

(29)

1
1+ 1 ’B'ﬁeZ(lnAd)/n

p= (30)

and

= ¥1-d/n 2 L (L=d/m 2
12 d/n 1-—e2nd)/n d/n

7\ Ve 7\ 1-d/n

(1+2) —1” ~<1+2> 7n- @D

A discussion of the relations between this new bound, the
union bound, and other previously derived bound can be
found in [3]. Using modified Gallager bound [3] the factor
¢H() in the bound can be ignored. This bound can be used
for bit error probability if Ag is replaced by >, FAy,q in
the bound [3].

2.3 Tightening the bound by Q( .) function

Any improved union type bound over AWGN
channel can be tightened by replacing Pleg] with

min{Pleq] ,AsQ(v/7%d)}. The same applies to upper
bound on the bit error probability by replacing A; with

E’UJ %vad'

3 Fading channel bounds

Here we assume a frequency-flat, slow-fading channel. To
obtain an appropriate mathematical model for it, we must
consider two factors, viz., the coherence time of the physical
channel and the presence of a delay constraint. The combi-
nation of these two factors dictates the choice of the model.

Consider first the coherence time; this is the inverse of the
Doppler spread. The product of the coherence time T, and
the data rate (in symbols per second) yields the number L of
transmitted symbols that are affected approximately by the
same fading gain. As an order of magnitude, for many wire-
less systems the values of the coherence time range from
0.01 to 1 s, while the data rates range from 20 to 200 k sym-
bols per second. Consequently, L > 20,000 x 0.01 = 200

symbols. If the transmitted code word has length », we may
obtain that for each symbol to be affected by an independent
fading gain we should use an interleaver spanning at least
nL symbols. Hence, the actual delay involved may become
very large (on the order of nT.). Now, in some applications
large delays are unacceptable (for example, real-time speech
requires a delay not exceeding 100 ms). Consequently, in
the presence of delay constraints in the system an n-symbol
code word will be affected by less than n independent fad-
ing gains. In the following we shall consider separately the
two limiting cases of no delay constraint (and hence fading
affecting independently every transmitted symbol: the “in-
dependent fading channel”) and stringent delay constraint
(and hence fading affecting independently every transmit-
ted code word: the “block fading channel”). In both cases we
assume that the receiver has perfect knowledge of the fad-
ing gain affecting the transmission, also known as “channel-
state information.”

3.1 Block fading channel
The channel model here is described by the equation
y=7ax+n (32)

where a is the fading gain, a random variable (RV) which
we shall assume to be Rayleigh-distributed with E[o?] = 1,
i.e., to have the probability density function

Fulr) = 2re™™",

By observing that (32) differs from (1) only for the presence
of the random gain «, if p(vy) denotes the error probabil-
ity for a given signal constellation over the AWGN channel
with parameter v, then the error probability for the same
constellation transmitted over the block fading channel is
given by

r>0 (33)

P(e) = Ealp(e:7)] (34)
where E,[-] denotes expectation with respect to the RV a.
In particular, any bound on p(7) is transformed into a bound
for the block fading channel by taking its expectation after
the transformation ¥ — a~. The expectation can be evalu-
ated numerically for example by using Laguerre quadrature
formulas.

3.2 Independent fading channel
The model here is

y=vax+n (35)
where o = diag (a1, a9, ..., qy) is the diagonal matrix of
the fading gains affecting the components of the transmitted
vector x. We use here the upper bound, derived from (15),

]P’[ed] = IEaIP’[ed ! a]

< EaPles, y € R o] + EaPly ¢ R| o] (36)



3.2.1 Selection of the region R

Notice first that the decision metric in this case is based on
the minimization of the norm

37)

The simplest region suggested by (37) is a sphere with ra-
dius v/nR centered at nyax, where 7 and R are parameters
to be optimized:

R={y ||y —mrex|*< nR%}

|y —yox ||

(38)

However, the resultmg bound is not tight.

Another choice is that of an ellipsoid, obtained by rescal-
ing each coordinate of y so as to compensate the effect of
fading and centered at 7yx:

R={y|| a7y —nmyx|*< nR%} (39)

where n and R have to be optimized. This choice does not
seem to lead to feasible analytical computations.

Yet another choice consists of a sphere centered at a point
obtained by a linear transformation of yax:

R={y||y— Avax|*< nR?} (40)

where A and R are to be optimized. A simple choice for the
transformation represented by A is a rotation and a rescal-
ing, corresponding te a diagonal A all of whose elements
on the main diagonal being equal to (e’¥:

R={yi|y—¢e?vax |?<nR%} (1)

where ¢, ¢, and R are now the parameters to be optimized.
Notice that in this case we have

+(*9? || ex || =2 cos pa(y, ax)

(42)
In the following we present the bounds resulting from this
choice of R.

Iy = ¢e?¥yax |°=|| v |I?

3.2.2 The new bound

By replicating the computations described in the previous
section, we obtain again a bound in the form

Ples] < exp{H(p) —nE(v*/2, d/n, p, B, 7,8)}  (43)
where
E(*/2, d/n, p, B, 7, 0) & (44)
- p(lnAd)/n+£1n-§+—l—;—£l i—:——g—
+ { (1—-27‘¢)]
2
+ p(1—d/n)ln [ 7@-(1a2r¢_9—-ﬁf)—”>]
D Y (1=-p(l=2r¢) (1-p(1-r))*

R (A - AT
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This bound should be minimized with respect to ¢, p, 5,
and r. The minimum with respect to ¢ can be obtained in
a closed-form, then the remaining minimizations must be
performed numerically. The bound can be further tightened
by replacing Pley] with min{Pleg] , g2 [} ] = sggiezr]dde}

Also, as it will be discussed in the next section, the factor
") can be ignored.
The suboptimum choice p = 8 =1,7r =0,and ¢ = 0.5

yields
+-‘£1n[1+7
n

2
In Aq _2_], 45)

E(v*/2,d/n, 1,1,0,0.5) = —

which is the exponent of the union bound. Thus, the union
bound becomes useless when this exponents equals zero,
that is, when

In [1 + 7;] = 1}11% Qn—j/%)ﬂ (46)
For large block length n and random codes we have
n :d = H(d/n) — (1 — R.)In2 47)
so that (In Ag)/m o
d/a;lx-———]/—n——:—ln[Q ¢ —1] (48)

and the minimum SNR for the validity of the bound turns

out to be )
o 1
X S |
( 2 >mm 21-Fe —1 @)
Since v2 = 2R.€,/ Ny, this corresponds to
& 1 1
N R@R-1) R 0

which is the cutoff rate of the independent Rayleigh fading
channel.

Numerical calculations show that for R, = 1/2 the new
bound can predict the error probability above 3.06 dB, while
the cutoff rate is 4.515 dB. Thus, the new bound outper-
forms the union bound by 1.5 dB (it should also be no-
ticed that the capacity for a rate-1/2 code is 1.8 dB). When
R. — 0, the union-bound validity threshold is 1.46 dB,
while the new bound is valid up to —1 dB. This indicates
that the new bound is tighter for low-rate codes.

3.3 Examples

In the first example, as shown in Fig. 1, the simple bound
for AWGN channel is applied to obtain the ML performance
of rate 1/4 Repeat Accumulate (RA) codes. Also in the Fig-
ure the performance of suboptimum iterative turbo decoder
for RA codes are shown.



Bit Error Rate

0.0 0.5 1.0 1.5 20 25 3.0 35 4.0

Eb/No

Figure 1: ML upper bound on the bit error probability of
rate 1/4 RA codes using the simple closed form bound
for AWGN, and the performance of suboptimum iterative
turbo decoder "

In the second example, as shown in Fig. ‘2, the simple
bound for Rayleigh fading channel is applied to obtain the
ML performance of rate 1/4 Repeat Accumulate (RA) codes.
Also in the Figure the performance of suboptimum iterative
turbo decoder for RA codes over independent Rayleigh fad-
ing with CSI are shown.
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