DETECTION OF EXPLOSIVES, NERVE AGENTS, AND OTHER ILLICIT SUBSTANCES BY ZERO-ENERGY ELECTRON ATTACHMENT

A. Chutjian and M. R. Darrach
Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109 USA
The Reversal Electron Attachment Detector (READ) used for generating low-energy electrons and extracting the product negative ions (Bernius and Chutjian, 1989; Boumsellek and Chutjian, 1992).
PRESENT READ SENSITIVITIES

<table>
<thead>
<tr>
<th>molecule</th>
<th>molecular weight (g/mole)</th>
<th>headspace vapor density (g/cm³)</th>
<th>mole fraction at 760 torr (VP/760)</th>
<th>moles nₐ/10 sec</th>
<th>grams Mₐ/10 sec</th>
<th>signal rate (counts/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNT</td>
<td>182</td>
<td>1.4×10^{-9}</td>
<td>184 ppb</td>
<td>1×10^{-12}</td>
<td>182 picogram</td>
<td>65,000</td>
</tr>
<tr>
<td>2,4,6-TNT</td>
<td>227</td>
<td>1.2×10^{-10}</td>
<td>13 ppb</td>
<td>8×10^{-14}</td>
<td>1.8 picogram<sup>a</sup></td>
<td>9,000</td>
</tr>
<tr>
<td>PETN</td>
<td>316</td>
<td>1.2×10^{-13}</td>
<td>26 ppbr</td>
<td>2×10^{-16}</td>
<td>63 femtogram</td>
<td>300</td>
</tr>
<tr>
<td>RDX</td>
<td>222</td>
<td>7.6×10^{-14}</td>
<td>8.4 ppbr</td>
<td>6×10^{-17}</td>
<td>13 femtogram</td>
<td>100</td>
</tr>
</tbody>
</table>

^a to be compared to 300 picogram for the Barringer ionscan, at an unspecified SNR [see F. Garofolo, et al., Rapid Commun. Mass Spectrom. 10, 1321 (1996)]

^b 4×10^6 c/s effective count rate with new ionizer
NEGATIVE-ION MASS SPECTRAL "SIGNATURES" OF THE EXPLOSIVES

![Graphs of RDX, PETN, and TNT mass spectra]
The Miniature Quadrupole Mass Spectrometer Array (QMSA) for the Trace Gas Analyzer (TGA)

Battery Voltage: 28 to 45 Vdc
Power Consumption: Total input power, including display, heaters etc. NTE 60W at 150 amu.
TGA envelope dimens: 6.5" X 7.1" X 17.5"
Weight: TGA without battery NTE 12 lb

Spectrometer Type Quadrupole Mass Spectrometer Array. Consisting of 9 parallel analyzers
Mass Range 1-600 amu (a 1-150 amu @ rf=10Mhz version is being deliverer to ISS)
Mass resolution 0.5 amu (FWHM)
Sensitivity 2×10^{12} counts/torr-sec (neutrals), $\sim 10^{14}$ counts/torr-sec (ions)
Dynamic range 10^7
Mass crosstalk better than 1:10^4
Detector type Channel multiplier OR Microchnnel plate
Power Consumption 15W at 150amu (including electronics and pumps)
Weight 1400 gr. (including electronics and pumps)
Front ends Straight-thru OR gas chromatographic input
Envelope dimensions 4" (height) x 6" (width) x 12" (length)

The Miniature Quadrupole Mass Spectrometer Array (QMSA) has been developed at JPL to reduce sensor size while maintaining the same performance as the large commercial units. The system maintains a mass range, resolution, precision, and stability comparable to larger units, with a sensitivity corresponding to \sim 500 ppb.

Currently slated for International Space Station (ISS) application for detection of leaks and contamination.

Other applications are: Planetary geology, isotopic analysis, surface-evolved gases (Europa), comets and asteroids; and ion composition in the Io torus and other planetary magnetospheres and ionospheres.