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Abstract

Evaluation of weighting functions in the atmospheric remote sensing is usually
the most computer—intensive part of the inversion algorithms. We present an
analytic approach to computations of temperature and mixing ratio weighting
functions that is based on our previous results but the resulting expressions use
the intermediate variables that are generated in computations of observable
radiances themselves. Upwelling radiances at the given level in the atmosphere
and atmospheric transmittances from space to the given level are combined
with local values of the total absorption coefficient and its components due
to absorption of atmospheric constituents under study. This makes it possible
to evaluate the temperature and mixing ratio weighting functions in parallel
with evaluation of radiances. This substantially decreases the computer time
required for evaluation of weighting functions. Implications for the nadir and
limb viewing geometries are discussed.
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1 Introduction

Ability to evaluate adequate weighting functions is of vital importance to
any retrieval algorithm based on solution of corresponding inverse problems.
By their physical meaning, the weighting functions in the atmospheric remote
sensing provide a quantitative measure of how sensitive are the observed ra-
diances to profiles of atmospheric parameters that are to be retrieved. In the
case of non-scattering atmosphere, there exists a simple analytic relation be-
tween observed radiances and profiles of atmospheric parameters. Depending
on representation chosen for the analysis, this relation can be differentiated
in the form of either variational or partial derivatives of radiances with re-
spect to either continuous or gridded atmospheric profiles. In the simplest
case of a temperature weighting function for an atmosphere with a blackbody
underlying surface at the ambient temperature and nadir viewing geometry,
corresponding expressions can be written as:
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or, in the finite-dimensional (jacobian) representation
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Here R, is a radiance observed at frequency v; T'(p) is the profile of atmo-
spheric temperature as dependent on atmospheric pressure p; Inp is selected
as a vertical coordinate; t,(p, i) is the atmospheric transmittance of a slant
column between the level p and top of the atmosphere along the line of sight
at zenith angle cos™! p; B, (T) is Planck function; Alnp is a (centered) differ-
ence of the coordinate Inp at the level p. In Eq.2 it is also assumed that the
atmospheric absorption is not dependent on temperature.

Under the same assumptions on the atmosphere and underlying surface,
the volume mixing ratio (VMR) weighting function can be written in the form
of analytic expression (Ustinov, 1990, 1991):
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Here f(p) is the VMR profile of the given atmospheric constituent, H,y(p) is
a gas scale height, x,(p) is the volume absorption coefficient due to this con-
stituent, and pq is the surface pressure. It should be pointed out here that the



transmittance weighting function 0tv/d1np which is directly used in the ex-
pression for the temperature weignting function, Eqs.1 has no direct relevance
to the VMR weighting function, Eq.3. In the finite-dimensional representa-
tion:
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The above expressions for the temperature and VMR, weighting functions
can be compared with the expression for the radiances R, themselves. Under
the same assumptions about the atmosphere and underlying surface, it can be
written in the form:
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Whereas the expression for the temperature weighting function Eq.1 is quite
simple (it is not, in the case of temperature-dependent opacity, as we will see
below), the expression for the VMR weighting function involves an integration
over the atmospheric column, as does the expression for radiances, Eq.5. The
existing literature on the analytic approach to computatations of weighting
functions like VMR weighting function, Eq.3 is still scarce and the general
approach pursued there, is, like in (Ustinov 1991), based essentially on taking
the derivatives of radiances as composite functionals of atmospheric profiles
of desired parameters.

In this presentation we consider an alternative way of analytic computa-
tions of the weighting functions in the non-scattering atmosphere that involves
integration of radiances only. The hint how, can be drawn easily from Eq.3
which, using the integration by parts, can be rewritten in the integral form sim-
ilar to that of the expression for radiances, Eq.5. In Section 2 we present gen-
eral considerations for the arbitrary line of sight, based in the Beer~Lambert
law. In Section 3 we consider the nadir case with a simple model of underlying
surface. The limb case and FOV convolution will be considered in Section 4.
Section 5 contains a brief summary and conclusions.

2 General considerations

We start from the Beer-Lambert law. For an element of an arbitrary line
of sight in the non—scattering atmosphere it can be written in the differential



form as (the subscript v is dropped for a while):

dl
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where [ is radiance in the direction of the line of sight and B is the Planck
function. Expressing the element of optical depth dr along the line of sight ds
through the total absorption coefficient &

dr = kds (7)

we can rewrite Eq.6 as

dI = (B — I)xds 8)

Integrating Eq.8 between some points sy and s, and adding the subscript 1 to
the (upwelling) intensity I(s) we have
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Equation 9 lays a basis for the method of computation of the temperature
and VMR weighting functions presented in this paper. First, we consider the
VMR weighting function, and as an intermediate object, the absorption co-
efficient (AC) weighting function. To proceed, we also assume that the point
sg is the lowermost point of the line of sight: the tangent point in the case of
limb geometry and the lower boundary of the atmosphere in the case of nadir
geometry. The details of this assumption in both cases will be considered in
corresponding Sections below. Then, both terms in the right hand side of Eq.9
depend on the values of temperature and VMR in the atmosphere correspond-
ing to the point s of the line of sight. The variational derivative with respect
to the value of the absorption coefficient at this point, x(s) can be obtained
directly from Eq.9:

6I1(s) _
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If the elementary layer in the atmosphere intersecting the line of sight at the
point s is the only one where the variation of the absorption coefficient does
happen, then the rest of the atmosphere is unchanged. Multiplying Eq.10 by
transmittance ¢+(s) along the line of sight from the point s to the observer at



infinity we have:
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The physical sense of the first term in Eq.11 is sensitivity due to upwelling
radiation only, accumulated between points sq and s. Denoting

0R
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we can rewrite Eq.11 in the form:
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We further observe that due to additivity of absorption coefficients of
separate atmospheric constituents, the AC weighting function with respect
to the absorption coefficient k,, of the constituent to be retrieved, and AC
weighting function with respect to the total absorption coefficient s, — do
coincide:

Miis) B 5258) a4
and for the derivative with respect to In ,,(s) we have
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Noting that In k,,, = In f + const(k,,) we obtain:
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We obtained the expression for the VMR weighting function through
the AC weighting function defined by Eqs.13, 12. The intensity I(s) used in
Eq.10 can be computed using, e.g., Eq.9 which computationally is a recurrence
relation computed along the line of sight, starting from the point s, all the way
to the observer to produce the observed radiances R. Thus, we need only one
integration and the need in the second integration, as in Eq.3 is eliminated.



Now we consider the temperature weighting function 6R/6T'(s). Taking
the derivative of both sides of the Eq.9 with respect to variation of temperature
T(s) at the upper limit of integration s gives:
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Using the same considerations as above to obtain Eq.11 we can write:
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Finally, using Eq.12 we obtain:
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Eq.19 can be compared with Eq.1 written for a more simple case. From
the definition of the transmittance function 4(s)

t(s) = eap - Zofs(s') i) (20)

follows that

K(s)tr(s) = — (21)

Thus, the right-hand term in Eq.1 corresponds to the first term in Eq.19 (the
opposite sign of the derivative in Eq.1 is due to difference in the direction
of coordinates s and Inp). Second term in Eq.19 with the the AC weight-
ing function dR4+/6T is due to the temperature dependence of atmospheric
absorption.

In following Sections we apply the general expressions for the VMR, and
temperature weighting functions obtained here to the nadir and limb viewing
geometries. Throughout the rest of this paper, the usual assumption about
the lateral homogeneity of the atmosphere will be used.



3 Nadir case
3.1 Specular underlying surface

We first consider the case of specular underlying surface because the re-
sults obtained for this case, will be used in the more realistic cases of nadir
geometry with diffuse underlying surface, and of the limb geometry which are
discussed afterwards. Also, with some stretching of imagination, the water
basins can be considered as specular reflecting underlying surfaces. The line
of sight can be specified here as consisting of two rays: upwelling, — from the
surface to the observer and downwelling, — from space to the surface. Both
rays have here the same zenith angles which facilitates the consideration.

Let s be the point on the downwelling ray of the line of sight, correspond-
ing to the same level in the atmosphere as the point s in the previous Section.
By analogy with Eq.9 we can write the expression for the radiance at the
downwelling ray I (s) in the form:

I(s) = [ (B() = L(s))x(s) s (22

The integration here is performed from space at s = —oo to the level at s.
A realistic assumption is made that the radiance of space Ij(oc0) is negligible
and, correspondingly, there is no off-integral term. The upwelling radiation
at the surface I4+(sq) has two components: reflected downwelling radiation due
to non—zero albedo A and proper radiation of the surface due to non—zero
emissivity e:

IT(SO) =A LL(S()) + €B(T0) (23)

Thus, derivative of I+(sg) with respect to any atmospheric parameter X (s)
can be written in the form:
5IT(80) (SIl(SQ)

X0 - A X(s)
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Applying the considerations used in the derivation of Eq.11, to the deriva-
tive 61)(sg)/dk(s) we obtain
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Here ¢|(s) is the transimttance along the downwelling ray of the line of sight,
from s to the surface at so. Equation 13 together with Eq.24 applied to x(s)
and Eq.25 define the AC weighting function §R/éx(s) which, in its turn, is
used to evaluate the VMR weighting function dR/é1n f(s), Eq.16.

Expression for the derivative of I} (so) with respect to T'(s) used in Eq.19
is obtained by a simple analogy with derivation of Eq.19. We have:
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Equation 19 together with Eq.24 applied to T'(s) and Eq.26 define the tem-
perature weighting function 6 R/6T (s).

To conclude this Subsection we change the coordinate s to the altitude z:

ds = :I:d—z (27)
"

(plus and minus signs correspond respectively to the upwelling and down-
welling rays of the line of sight) and summarize the results in the sequence
they are used in actual computations.

1. Recursively compute the downwelling radiances starting from the value
I, (00) = 0 (using, e.g., Eq.22):

1o = [ (B - 1@)et) (<) 28)
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2. Evaluate the upwelling radiances at the surface (cf Eq.23)

IT(Z()) =A I¢(Z()) + €B(T0) (29)

3. Recursively compute the upwelling radiances starting from the value I;(z)
(using, e.g., Eq.9):

4. Compute the upwelling transmittances (using, e.g., Eq.20):

t(z) = eap( - [t £ (31)
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5. Compute the downwelling transmittances using a simple relation:

ty(z) = (32)

which is based on an identity £+(2) - ¢;(z) = t+(20)

6. Evaluate the upwelling, downwelling and AC weighting functions (cf. Egs.25,
12, 13 and 24)

<5ii>>T =t1(2) (B(T(2) ~ 1(2) (33)
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7. Evaluate the VMR weighting function (cf. Eq.16)

51;S ?(z) = fim(2) 52& (36)
8. Evaluate the temperature weighting function (cf Eq.19, 26 and 24)
7 = OO F| e 7
where the effective transmittance t.s¢(z) is defined as
ters(2) = t(2) + Aty (2) (38)

It should be noted that most of computational burden is due to computa-
tions of the transmittances and radiances. Equations 28-32 used to evaluate
them are optional and any other appropriate procedures can be used. Once
the transmittances and radiances are computed, evaluation of all weighting
functions is done using simple non-recursive relations Eqs.33-37.



3.2 Scattering underlying surface

In this case the upwelling radiation at the surface is dependent on the
distribution of the downwelling radiation over the whole hemisphere.Assuming

for simplicity that the underlying surface is a Lambertian scatterer we have
instead of Eq.29:

1
I+(z0) = 24 / Iy(20, ) 11y dpsy + € B(To) (39)
0

or, using the an affordable Gaussian quadrature

I(z0) = 24 kz_jl T(z0, )iass + eB(Th) (40)

(NB! n = 1 may be not enough). Correspondingly, all downwelling variables
have now to be computed for the selected set of pyx, k = 1,...n and appropri-
ate summation is necessary in the analogs of Eqs.35 and 38. The rest of the
algorithm remains unchanged.

4 Limb case
4.1 Computations for a single line of sight

The simple change of coordinate s — z, Eq.27 is not valid for the limb
case since p varies along the line of sight. Using radial distances r instead of
the altitude z we have:

dr
AT —Tg

ds =+ (41)

where the plus and minus signs correspond to the aft (downwelling) and fore
(upwelling) legs of the line of sight and 7, represents the radial distance of
the lowermost point (tangent point) of the line of sight. An optional way of
dealing with the well-known singularity in Eq.41 used in this presentation is
as follows. The integrand function f(r) in the integral expression

F(r,ro) = /f(’f") \/jTT_I;(; (42)
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is represented by its values {f;},7 = 0,... N — 1 over the appropriate set of
gridpoints {r;} (ro included) with linear interpolation between them:

Ty

f(r)=f;+ T——(T =) (43)
j+1
which is easily rewritten as
£ = w5 () fj + wFia () fiso (44)

where the coefficients w; (r) wj,;(r) have nonzero values:

_ Tjgp1— T + r—rg
wi (r)=-""——, wi,(r)=——; (r<r<ri) (45
’ Tjp1 =T al Tjp1 ~ 175 ’ ’ )
and are identical zero outside of the interval specified. The ”—" and ”+”

subscripts simply mean that the corresponding gridpoint is below or above
the current value of the argument. These coefficients can be easily integrated
numerically along the line of sight:

£ (1) / w? (46)

7‘ —7‘0

Substituting Eqgs.44, 45 into Eq.42, performing integration and combining the
terms with the same indices j' gives:

F(rj,ro) Z wjr (o) f (47)

where

wj(ro) = wj(ro) + wi(ro), 0<j' <j;
wo(ro) = wy (1),  wj(ro) = wi (ro) (48)

The singularity that is present in Eq.42 is now contained in the integral coef-
ficients wj/(ro).

Applying treatment of this Subsection to Eq.9 we obtain:

ITJ 7'0 Z Wy 7'0 ( it ITj’ (TO))K]" + ITO(TO) (49)
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and we can obtain an expression for the matrix of partial derivatives with
respect to «; in the form analogous to the expression for the corresponding
variational derivative, Eq.10:

O11;(ro)

oy w;(ro) (B; = Irs(ro)) + 9110 (7o)

al{j

(50)

The resulting algorithm for the single line of sight with the tangent point
at ro written in terms of partial derivatives can be summarized as follows (cf
Subsection 3.1):

1. Recursively compute the downwelling radiances (using, e.g., Eq.49) starting
from the value I y_; = O:

=

-1

I,;(ro) = 2 le'(fo)(B(fFj') — L1 (ro) )iy (51)

2. Define the upwelling radiances at the tangent point using an identity that
holds there

Ito(ro) = 110(r0) (52)

3. Recursively compute the upwelling radiances (using, e.g., Eq.49) starting
from the value I}o:

I15(ro) Z w;r (7o ( Ty) — Iy (7"0))"5] (53)

4. Compute the upwelling transmittances:

tr(ro) —eacp< Zw] o)k ) (54)

5. Compute the downwelling transmittances using the relation:

to(ro)
t1i(ro) = 5)
i]( 0) tTj(TO) ( )
6. Evaluate the upwelling, downwelling and AC weighting functions:
OR(r
(ZB) —ruttro) (BT - 1) (56)
Rj +

12



0110(r0)

Sk = w;(ro)ty;(ro) (B(Tj)—fw') (57)
s

7. Evaluate the VMR weighting function:
BR(T()) N aR(To)

olnf; ™ oy (59)
8. Evaluate the temperature weighting function:
S = stess() g + 75 (60
where the effective transmittance t.f (o) is defined as
tess,5(To) = t1(ro) +1,,(ro) (61)

4.2 Integration over the field of view

Although computations of the weighting functions (here, jacobian ma-
trices) using the intermediate radiances substantially reduces the computing
time as compared with independent computations, this process, even for a
single line of sight, remains to be a time consuming. In the real world we have
to integrate over the finite field of view of the instrument, or, if there is any
way of scanning across the limb, — over an array of them.

This Subsection provides an optional way of incorporating the radiances
and jacobians computed for a discrete set of lines of sight into those computed
for the field of view with inevitably finite span over the tangent heights above
the limb.

Let the set of lines of sight with tangent radial distances {p;},k =
0,...n — 1 provides a detailed enough coverage of limb radiances:

Rk:R(pk)k=0,...n——1 (62)

The radiance R(p) for an arbitrary tangent radial distance p can be interpo-
lated in a manner analogous to Eqgs.43, 44

R(p) = a;, (r) Rk + ai, Ryt (63)
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where

a; (p) = PRl 70y Pe < p<prt1) else ap(p)=0 (64)
Prk+1 — Pk
p— .
aii(p) = —i——; if pr<p<prr1) else af(p)=0  (65)
Pr+1 — Pk

Combining the coefficients at the same grid point pg

we can rewrite Eq.63 in the form of a sum over the radiances Ry:

n—1

R(p) = Y ax(p)Re (67

k=0

and convolve it with the sensitivity ¢(p) across the field of view:

/ p)dp = Z(\-/ ak(p dp - Ry, (68)

Fov

Thus, the effective radiance RFOV) observed in the given field of view can be
expressed through the grid radiances Ry

n-1
R(FOV) _ 3 GSCFOV) R, (69)
k=0

using the convolved coefficients

o = [ axlp)dp (70)

FOov

Using the same coefficients, the partial derivatives of radiances R¥OV)
to any atmospheric parameter’s value X; at a gridpoint r; can be expressed
through the derivatives computed for a given set of lines of sight across the
field of view:

dR(FOV) _ ol 4 FO) ORy,
0X; koooX;

k=0

(71)

14



The idea of using the convolution of the interpolation coefficients instead of
radiances and jacobians themselves can be extended from the linear interpo-
lation to that using the higher—order polynomial.

5 Conclusion

Analytic approach to computations of the weighting functions for remote
sensing, as compared to the finite-difference approach, has substantial ad-
vantages in terms of computer time required. Both temperature and VMR
weighting functions can be computed using this approach. The closed—form
analytic expressions fot the weighting functions still may require expenditures
of computer time comparable or exceeding those needed for computations of
observed radiances.

The particular analytic approach proposed in this presentation is aimed at
further savings of computer time. It is based on the using of the intermediate
radiances I(s) and transmitttances ¢(s) that are byproducts of computations
of observed radiances R. They are used in simple closed—form relations to com-
pute the AC weighting functions and, further on, to evaluate the temperature
and VMR weighing functions. As has been demonstrated above, this approach
is applicable to cases of both nadir and limb geometry of observations.
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