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Abstract 
In late September 1995, the National Space Development Agency of  Japan (NASDA) began a new 

phase of operations  for  the  Japanese  Earth Remote Sensing satellite (JERS-1) Synthetic  Aperture Radar 
(SAR) - the Global  Rain Forest  Mapping  (GRFM)  project.  The  first rain forest area to be mapped was 
the Amazon Basin, between September and November of that year (the low flood  season  for much of  the 
region),  in support  of the JERS-1 Amazon Multi-season Study (JAMMS),  sponsored by NASA. This 
data acquisition was repeated six months later to acquire a second map  of  the Amazon, during the high 
flood season  in  May/June  of  1996. The main  objective of the JAMMS  project was to generate a map of 
inundation over the Amazon basin by comparing data from the high-  and low-flood seasons. Most of  the 
data collected  during these two  phases  of the JAMMS  project,  a  total  of -5000 frames of data, was 
received  and processed by the Alaska  SAR Facility, then sent to JPL and NASDA  for  post-processing 
and analysis. 

The quality of the data processed by ASF for the JAMMS  project  has proved to be  exceptional. 
This paper is a summary of  the  JAMMS  project, which  has resulted in a scientific data  set of  very high 
value - a  multi-season snapshot of one of  the most difficult  areas  on Earth to monitor. 

I .  Introduction 
The Amazon rain forest is a region  of the earth that is undergoing rapid change.  Man-made 

disturbance such as clear cutting for agriculture  or  mining is altering the rain forest  ecosystem. For  many 
parts  of  the rain forest, seasonal changes  from the wet  to the dry season are also significant  and 
fundamental  to understanding the  regional ecology. Changes in the seasonal cycle of  flooding  and  draining 
can cause significant alterations in the forest ecosystem. 

Because  much of the Amazon basin is regularly  covered by thick  clouds, optical and  infrared 
coverage  from the  LANDSAT and SPOT  satellites is sporadic. Imaging  radar offers  a much better 
potential for regular  monitoring of changes in this region. In particular, the JERS-1 satellite carried  an L- 
band HH SAR system which, via an on-board type recorder,  could  collect data from almost anywhere on 
the globe, at any time of year. 
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The JERS-1 satellite, which stopped operating in 1998, traveled  in a  568 km altitude orbit with a 
payload  that included an L-band, HH-polarized SAR  with a nominal  21m X 2 1 m  resolution, which imaged 
at  incidence  angles  between 30 and 36 degrees (EORC, 1995). The JERS-1  SAR was  the  first  polar- 
orbiting  imaging  radar system capable of monitoring the whole of  the Earth's land surface, because of  its 
on-board tape recorder system. Further,  because  of the ability of imaging radar to see through clouds, qnd 
the sensitivity  of L-Band backscatter measurements to different biomass levels  and  flooded forest 
conditions,  the JERS-1 SAR was well-suited to multi-temporal studies  of  the Earth's land surface. 

Unlike the European ERS-1  SAR, which was primarily designed for. studying  the world's ocean 
and  ice-covered areas, the wavelength, polarization, incidence angle and sensor performance of  the JERS-1 
SAR was  optimized for studies of  vegetation  cover  on  land (Yoneyama et al, 1989). A look at some 
examples of JERS-1  SAR  images over forested. areas verifies this: clear-cut areas, flooded forests, 
marshland  and water channels can easily be separated visually. On closer inspection,  it can also be seen 
that flood plain forest  areas in  JERS-1  images  have a  smoother image texture  than  forests  on higher 
ground. 

NASDA initiated the GRFM project in 1995 (Rosenqvist,  1996).  The objective of this  project 
was to use the JERS-1 SAR to map the world's tropical rain forest regions at  high resolution. This  project, 
lead  by NASDA's Earth Observation Research Center (EORC), and with key participation by NASA's 
Jet Propulsion Laboratory (JPL), and the Space Applications  Institute  of  the European Commission's 
Joint Research Center (JRUSAI), assembled a team of invited scientists to evaluate, analyze, and use the 
data. 

One of  the  products  of  this task is  the mosaicked imagery. This imagery may be found at  the 
following website : 

http://trfic.jpl.nasa.gov/ 

2. Science  Objectives 
Our  main science objective was  to  map the Amazon River  basin twice at high resolution in  order 

to determine the extent of inundation that occurs between the approximate low and high flood stage of the 
main stem of the Amazon River. The following actions were necessary to accomplish this goal: 

First, obtain coast to coast imagery of  Northern South America,  in 
particular, of the Amazon river basin. Due  to the timing of  the  activities  of  the 
JERS-1 SAR, this first mapping was obtained  at the low flood of  the main stem 
of the Amazon river. This baseline  image was required  in order to establish low 
flood characteristics such  as minimum extent of open water, and areas flooded a 
majority of the year; and establish land  cover (forest,  non-forest,  water, flooded 
forest) as measurable by L-band SAR for a continental scale region. 

Second, obtain another coast-to-coast image acquisition at  the high flood 
of  the main  stem of  the Amazon River. This  data would establish  the 
approximate maximum extent of flooding, the approximate maximum area of open 
water, and, together with the low flood data, determine the difference in flooding 
extent (both open water and forest area)  between the approximate low and high 
flood of the Amazon river and its tributaries. 
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Third, mosaic the imagery into regional geolocated data sets, such that the 
high and low flood data could be easily compared  pixel by pixel for differences in 
SAR backscatter. This  step required that the data be well-calibrated 
radiometrically, and that the geolocation accuracy be  well  known  in order to 
facilitate validation. (Siqueria, et al, 2000) 

Fourth, validation of the inundation extent as measured by the JERS-1 
SAR imagery had to be performed in order to legitimize the result. A description 
of this activity may  be found in Hess et a1 (this issue). 

Our secondary science objective was to determine how well simple land cover types might be 
classified from large  regional  SAR data sets. This was accomplished concurrently with our  primary 
objective to map inundation. The exploration of  the rich  JERS-1 data source followed a three stage 
succession: 

First, generate  from the high-resolution data sets lower resolution 
backscatter and texture imagery. These  products are described more fully in 
section 4. 

Second, allow open access by science investigators to the observed, 

classification schemes. For example, see: Saatchi, et al (2000), and Podest and 
Saatchi (this issue). 

Third, perform experimentation on the separability of  classes and 
classification schemes. In particular, to veri@ that the  data  products are well 
calibrated enough for classification analysis. 

L uninterpreted data products to encourage experimentation with a variety 

3. PRE-GRFM CAMPAIGNS 
As a first step  towards using JERS-1 SAR data to map the vegetation cover over the entire 

Amazon basin, we conducted a precursor campaign in 1993 in the Western Amazon at the Manu National 
Park in Peru. The campaign  involved  ground measurements and  near simultaneous overflights of JERS-1 
and the NASNJPL Airborne Synthetic Aperture Radar  (AIRSAR) systems. One objective of  the 
campaign was to see if  JERS-1  SAR  image data alone could be used to classify different vegetation cover 
types in this remote, relatively undisturbed region of  the Amazon basin. 

On June 7,1993, AIRSAR underflew JERS-1 near Manu National Park. The three frequency (C- 
band, L-band, and P-band), fully polarimetric system (Lou, et al, 1996) imaged roughly the Same area as 
that imaged by JERS-1 on the same date. See figure 1 for a comparison of  some  of  the imagery obtained. 
This  data set, along with a JERS-1  image of the same  area in October,  1992 and March, 1993, and a 
sequence of images  near  Manaus, Brazil, established the  JAMMS observation strategy (Chapman, et al, 
this issue), the post-processing that would  be required, and the necessity for mosaicking. 
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Figure 1 : Subset of JERS - 1 and AIRSAR imagery of Manu National Park, where the Rio Alto Madre de 
Dios and Rio klunu join to form  the Rio Madre de Dios. A) Portion of JERS-1  SAR image. B) portion 
of AirSAR I.-[ I 1  I mosaic. C) portion of three  frequency  AirSAR mosaic (Blue : Chh; Green : Lhh, Red : 
Phh). 
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A plant  and  wildlife preserve protecting areas of the  Western Amazon, Manu National  park is a 
popular  study site due to its biodiversity  and pristine conditions. Three rivers dominate the area : the Rio 
Alto  Madre  de Dios and Rio Manu join to  form the Rio  Madre  de  Dios. This region  experiences two 
seasons: the  dry season lasting roughly  from  May  to September and  the  wet season spanning October to 
April. 

The  imagery  from this area, both AIRSAR and  JERS-1 SAR, were  initially analyzed to determine 
separability of land  cover types, and  resulted  in  the JAMMS processing architecture that was  used to 
process the coast-to-coast data set. As such, the description of the land cover (Forest - hill,  floodplain, 
and  upland;  low  vegetation; water) that  were  used to determine our initial  classification  and image product 
assessments and definitions follow: 

Several different forest types exist throughout the Western Amazon. Hill forests occur  in  hilly 
regions of Manu National Park north of the Rio Madre de  Dios. The hills are from 20-30m high and 
between 50-1 50m wide, thereby protecting much of the forest from river flooding. Hill forest is composed 
of a mosaic of mature forests with a height  ranging  from  20-45m.  On the hilltops the canopy is closed, 
while  on the slopes and  in rivulets between  hills palm and  bamboo  becomes  more prevalent. This forest 
type is also semi-deciduous, which implies that some tree species lose their leaves  in the dry season. Due 
to the remoteness of much of the hill forest, it is the least studied forest type. 

The upland forest is found between the base of the Andes and the Rio Manu. It is similar to the 
hill forest, but contains different soil and trees only  20-30m high. The canopy is uneven  and  much  of the 
upland forest is  deciduous,  implying that this forest type should experience the greatest amount of leaf 
loss in  the  dry season. 

The final forest type is the flood  plain forest surrounding  the rivers. Regular  flooding  damage 
occurs here,  and therefore, many stages of  forest succession can be  found.  For example, areas far  from the 
rivers  and  flooding are the most mature,  with a very  homogeneous, closed canopy and an average  height of 
50m. The  understory  of this mature forest contains a homogenous growth of palms. As one approaches 
the  rivers,  however, a less regular forest can  be found. Stands of almost pure Heliconia banana plants 
from  2-3m  high  signal  the  first  stage  of  regrowth.  In  areas  where  severe flooding has killed everything, the 
forest is very disturbed with a dense cover of liana vines. These areas  generate a strong L-band response 
due  to a specular reflection  from  the trunk-ground interaction. Other areas known as Aguajales  are 
characterized by stands of Mauritia palms. These palm stands range  from  very wet to dry  and  also 
generate a strong L-band response. 

As  the rivers meander through the Amazon,  erosion  and deposition create numerous sandbars and 
oxbow lakes, known as cochas. In  time, these areas dry out and forest succession begins. The first stage 
beyond  the sandbar or bare earth is grass. Next, brushy plants known as Tessaria begin to grow  which  are 
from 0.5-1.5m tall. Following Tessaria are  two possible types of dominant  land  cover: either a 10-12m 
tall  forest  will  grow,  or  caiia  brava  plants,  which  resemble  sugar cane, will fill-in. Finally, the  last  stage  of 
succession  is a forest ranging  from  12-50m  tall, commonly containing cecropia trees. In  an  initial 
classification scheme, areas denoted as low  vegetation  were  patterned  after vegetation in  early  successional 
stages  found  along  the  rivers  or  in  old  cochas. 

4. JAMMS Data Processing 
The  JAMMS data processing had several requirements. First, we  had  to  be able  to absorb a large 

quantity of full resolution data from  both NASDA and ASF (approximately 200 Gbytes, an enormous 
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cllranti ly by 1995 standards). ’l’hcrct‘ore, one objective was to reduce the data volume  by  producing low- 
resolution  products (and archive the full resolution products), and to put all prbducts whether from ASF 
o r  NASDA into a common  image  format.  Second,  based on preliminary work, we wanted to produce a 
statistical spatial component of the imagery to assist in  the ability to classifL various land  cover types. 
This “texture” measurement  additionally  allowed  us  to  extract  more information about the characteristics 
of the f d l  resolution data in a low  resolution  and low data volume product. Thirdly, we  had to iterate 
though  the  calibration process as we  learned  more thoroughly through the mosaicking process the 
radiometric  characteristics of the  data. 

Through initial  work prior to  the start of  the  JAMMS  task, it was  found  that mean backscatter 
and  the  standard  deviation of texture  (Swain, 1978) were  useful as features for classification.  While other 
texture measures are possible ( for instance, Podest et al, this issue), this one based on the spatial statistics 
of  the  radar observations was judged sufficient for our simple classification objectives. 

Figure 2 below shows the mean  backscatter  for a portion of one  of the JERS-1 SAR images used in 
this study. The standard deviation of texture  was  calculated  via the following formula: 

0; = 
N + l  

1+-  
SNR 

‘ Where D~ is  the  standard deviation of the  pixel  intensities over some  area  and pp is  the mean  pixel 
intensity. This texture measure is natural  to radar images  and is related to  the  proportion of dominant to 
background  targets  within  the  reduced  resolution  pixel. An example of a texture image is shown in Figure 
3. During the 8x8  averaging down of the full-resolution JERS-1 SAR  images, backscatter and texture 
images  were  created. 

Figure 2: Low resolution (8x8 averaging) SAR backscatter  image 
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Figure 3: Texture Map corresponding to Figure 2. 

Texture  was  found  to  be a useful  measurement in our advance  work in the separability of land 
cover classes  because it i.)  helped  distinctly separated the three forest classes, ii.) highlighted rivers  hard  to 
distinguish  from  backscatter alone, and  iii.)  was  unaffected  by first-order calibration errors. Using  ground 
information  from  field  campaigns in Peru (see previous  section) and Brazil, texture and backscatter 
imagery for different land cover conditions were  carefully scrutinized. In the next section, a 111 
description of characteristic values is presented. 

After data reduction, the low-resolution byte images from the low-flood (and high-flood) season 
were  mosaicked  together both at JPL (see Siqueira et al, 2000) and at  NASDA using two different 
approaches. In addition to the geometric  co-registration of  the imagery, the calibration  accuracy  required 
far  exceeded  the  pre-flight planned capabilities of  the instrument. For a description  of  how a sufficiently 
high  level of calibration accuracy was  accomplished, please refer to  Chapman, et a1 (this issue). 

5. Classification  methods 
Unlike  the classification of imagery from optical sensors, which are primarily based  upon the color 

and  ratio of colors of an object at  perhaps a variety of bands in the optical and near optical portion of  the 
spectrum, side-looking  radar  image classification is strongly dependent upon the structural components of 
natural  and  man-made elements in the  illuminated  ground swath. For example,  at the L-band  wavelength 
of  the  JERS-1  SAR,  the  brightest areas are generally the result of “double bounce” scattering,  in  which the 
signal  travels  from  the satellite to  the ground, to a component of the tree trunk,  and back to the radar  while 
experiencing only a minor loss of power  in  each  scattering event. Compare this  to specular scattering 
along,  where a signal  reflects off of a smooth surface, thus scattering the majority of the energy  into the 
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forward direction and  not  back  to  the radar. Thus, double bounce reflections  are significantly brighter than 
water or open terrain type reflections. 

It has  been  found through analysis  of the JERS-1,  AirSAR  and  SIR-C data that flooded forests 
have  high backscatter due to “double bounce” scattering (Hess et al, 1995), that water and low  vegetation 
have  low backscatter due to specular reflection away from the illuminating source and forests have 
intermediate backscatter due to difhse scattering from the forest canopy (Durden  et al, 1991). The &ge 
of backscatters that make up the overall  mosaic depend on a mixture of  these  scattering mechanisms  and 
other effects  relating to topography, moisture and landcover type. 

For  the case  of JERS-1, only one polarization channel is available (HH), which makes the measure 
of backscatter power alone insufficient for differentiating between some fundamental terrain and  land 
cover types  of  interest. However, while the image texture does not reveal anything  about the scattering 
mechanisms involved, we have  found that it  can help distinguish areas that have  similar  scattering 
mechanisms, but resulting from different targets and patterns of  targets  on  the  ground. 

Problem areas for the L-band  JERS-1 S A R  are differentiating between open water  and  low 
vegetation areas (due to the low signal to noise ratio  of  this  instrument),  separating flooded forests fiom 
urban areas (which also exhibit double bounce returns), and differentiating floating  grasses  (called 
macrophytes) from the surrounding water and vegetation. 

In addition, problems specific to this task include radiometric calibration errors (even those well 
yithin the  designed specification for the JERS-1 S A R ) ,  the  time  lag between the beginning and  end of data 
acquisitions (in which seasonal change can have a profound impact on  the imagery), and replacement data 
takes from different epochs when an acquisition failed. 

In the remainder of  this discussion, we will  examine a specific classification technique. In 
particular,  a  simple classification technique based  upon backscatter and  image texture values  will be 
described. 

Maximum-likelihood Classification 
The classification scheme  described  in  detail  here  is  based on  a  supervised, Bayesian, maximum- 

likelihood classifier. Essential components of such a classifier are the following: 

(1) A feature vector containing the measurements of interest is identified 
(2) Training patterns  representing  distinct  classes 
(3) Statistical models of these classes 
(4) Decision rules to determine which class the feature vector is 

most  likely  to  belong 

We used a feature vector comprised of two components: estimated backscatter ( G O ) ,  and the 
texture measurement discussed earlier.  Each  pixel  in a JERS-1 image to be classified is represented by 
these two measurements. 

The June 7, 1993 image from  Manu National Park in Peru provided all of the training data for the 
classifier, and  will be referred to as  the training  image.  From comparison of this scene  to  ground 
measurements, six vegetation classes could be distinguished. These classes are as follows: 
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( I )  Highly textured forest represented by hill forest 
(2) Medium textured forest represented by flood plain forest 
(3) Low textured forest represented by forest on a smooth plateau unaffected by flooding 
(4) Palm stands and areas with a bright L-band response 
(5) Low vegetation such as Boca  Manu airstrip and drained cochas 
(6 )  Open water 

Once these classes were chosen, training patterns were created to  provide a model of each  class. 
These are illustrated below: 

Figure 4: Training Patterns Created by Averaging Over 15x1 5 Boxes 

I25 00 

I O 0  "0 

5 0  00 

Figure 5: Training Patterns Created by Averaging Over 3x3 Boxes 

Next the mean,  variance,  and  covariance of both o0 and texture were calculated for each class. A 
masking approach was taken to remove those areas corresponding to  open  water from the classification 
process. This involved convolution with an edge-detecting filter, followed by thresholding and then region 
growing to find the  paths followed by the rivers within the scene. Figure 6 shows  an example of  such a 
mask. Masking of open water was desirable, due to the similarity of backscatter values  of open water and 
low vegetation areas. 

9 



Figure ' 6: Mask for water areas 

Preliminary Classification 

Before classifying a JERS-1  image, the image must first be calibrated (Shimada 1993). However, 
some  residual  calibration errors may  remain  which  can  cause the classifier to break down. Cross-track 
calibration errors, for example, appear as dark  or  bright  vertical bands throughout an  image,  resulting  in 
unclassified or misclassified forests. Therefore, before an image was classified it was corrected with 
respect  to  the  original  training  image. 

Since the texture measurement is essentially a ratio of standard deviation over mean, first-order 
calibration errors, such as radiometric offsets or linear trends, cancel, having no effect on the texture. The 
most  significant error source for the texture measure is the SNR estimate. Therefore, the texture image 
corresponding to each backscatter image was  left untouched and was assumed to be correct. 

The accuracy of the classifier was evaluated by comparing the areas used to create the training 
patterns with the results  of  the final  classification.  Since the training patterns were created by  averaging 
over  3x3  and  15x15  boxes of pixels, a representative pixel from each  box was compared to the 
corresponding pixel in the  final classification. In Table 1 , the Percent column consists  of  the 
representative pixels matching  the  final classification divided by the total number of 3x3  and  15x15  boxes 
used  to create the training pattern. 

Class 
Highly Txr. Forest 
Medium Txr. Forest 
Low Txr. Forest 
Palm 
Low Vegetation 

Percent 

66% ' 90% 
9 1.2% 
48% 
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This classification was  then  applied  to  the entire dry  soason  mosaic as illustrrlted i n  figure 7. The 
main  value  of  this  result  was  to  confirm  that  the data set was sulticiently well calibrated  to  allow a single 
algorithm  to be applied across it and also to  identify  arcas  whore  ambiguous signatures may  be a problem 
in future classification efforts, for example, in  trying  to separate very low vegetation savannas from open 
water. 

Figure 7: Simple  Maxiimum  likelihood  classification of dry season mosaic. 

The next step was to take a look at  an  entire  sequence of classifications of  an image set. In two 
image sequences (a color composite is shown in figure 81, areas of bright  L-band response were  seen to 
shrink and  grow as the seasons change. This effect was attributed to  the  result  of  flooding  or  sensitive 
palms growing or  losing leaves in response  to  water. 

With  both  dry season and  wet season data the  feature space becomes  much  richer. It is 
straightforward  to generate mean  and  texture  data sets for  each observation date, and the ratio  between the 
mean values is also of interest due to  its  normalized  sensitivity to change. The added  dimension  this  gives 
to  the data set  is  illustrated  in  Figure Sa. With  more  features  available i t  is possible to separate more land 
cover classes i n  the data. This is demonstrated in Figure 8b, which shows the results of applying a 
supervised ma?<imum likelihood  classifier  to  the  multi-scason data. I-Lcro sis classcs aro separable with 
reasonable success. 



Figure 8 a:  "season composite image of an area southwest of Manaus, Brazil  with red as the flooded 
season  backscatter,  green as the dry season  backscatter, and blue representing the ratio betkveen the two. 



Figure 8b: Example  resulting  supervised classification for an area soutlnvest of Manaus, Brazil 

To further  illustrate this point, Table 2 shows classification  accuracies  for the single-season data 
1Ised separately, and the significant  improvement  obtained  when  the  combined  high-flood  and  low-flood 
d a t a  are used. 

IWater 153.9 197.4 I 
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93.2 164.7 161.6 I 
50.2 
40 

80.6  122.2 I 
174.2 174.2 I .  

77.9  157.9 I 18.6 I 
165.9 

Table 2: Classification accuracies for supervised classification of multi-season JAMMS  data for the area 
shown  in Figure 8. 

The  work for incorporating the entirety of the low and high flood mosaics  is ongoing. 

6. Implications  for  Future  Missions 
Resulting from the GRFM project were a number of advancements relating to SAR imaging and the 

characterization of rainforests that will have implications for future  efforts in landcover monitoring and 
mission designs. 

The first and most obvious  of  these is the utility of initiating large-scale  mapping campaigns that 
hpve both a detailed science plan and  generalized observing strategy  for providing data  products for 
applications not yet conceived. The  need for a map of flooding inundation gave the leading justification 
which led to two-season “snapshot” coverage over the entire extent of  the Amazon rainforest. The result 
were two high-resolution continental-scale images of interest and use to a large and diverse community, 
extending from students,  scientists and environmentalists studying  the region, to oil companies and 
government entities whose intent is to inventory resources and plan their environmentally safe and 
conscientious development. In all cases, the extensive images obtained promote awareness of the region 
and provide a benchmark for monitoring fhture change. 

Programatically, the GRFM provided unique opportunities  for international collaboration on data 
processing and analysis resulting in a combined effort whose results were greater than the sum of its parts. 
This synergy occurred by way of scientists from multiple organizations working toward the same  goal by 
breaking it into similar yet unique manageable parts. Hence, methods  for mosaicking,  calibrating and 
classifying the data were individually developed within the various centers and the results compared and 
discussed at yearly workshop meetings. The information and techniques garnered from the  workshops 
were taken back  to their home institutions to improve processing methods and to advance the research in 
preparation for the next meeting. 

JPL collaboration with researchers from the Institute for Computational Earth System Science 
(ICESS) at the University of California, Santa Barbara  (UCSB), provided interaction and  feedback with 
researchers actively studying field sites within the regions  being  imaged. Not only was  this instrumental 
in the interpretation of  the collected imagery, but it guided the development of the two-season data set 
into a user  tested and validated resource. The geographical expertise of UCSB fed back into the geographic 
accuracy of the data set by providing comparison between the developed mosaics and known points  on 
the ground derived from maps  or specific locations in  field test sites. For the given set of inputs,  the 
resulting  mosaic thus was tested and corrected to  achieve the best achievable accuracy, be it geometric, 
radiometric or thematic. 
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Finally, a new  method for obtaining wide-region  coverage over relatively short time scales was 
developed and demonstrated through the GRFM. As with many instruments, there is often a tradeoff 
between complexity in the design vs. the degree of post-processing necessary to execute a desired task.. 
In the case of SAR, a somewhat complicated observing strategy called scansar is often implemented to 
extend the cross-track swath by electronically steering the antenna beam both in azimuth and elevation. 
The tradeoff for implementing scansar can  be noticed in a slight loss in radiometric quality of  the  data 
because of the large range of incidence angles and because of the potential for the antenna pattern to change 
as it is being steered. The advantage of scansar is that the wide-swath image is obtained within the brief 
period that the satellite passes over the target region (less than one minute), and thus, this mode is often of 
use in oceanography for studying currents, etc. For many terrestrial applications however, the time-scale 
of change is on the order of  days if not weeks; hence a steady progression of  passes over a region can be 
stitched together, with the result being just as effective and usehl (if not more so) as scansar. The result 
of implementing this observing strategy is to allow simplification in instrument design and data 
processing. 
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