JPL Real-Time Analysis Software
Background

• Satloc's WADGPS services
 - State-spaced system using JPL's rtg s/w
 • In operation since Nov. 1996
 - Demonstrated dual-freq. DC-8 aircraft positions
 • < 50 cm vertical, 40 cm horizontal (rms.)
 - Sale of network to Fugro OmniSTAR
 • User services stopped in April of 2000.

• Prototype for FAA's WAAS
 - Software licensed by Raytheon
Enabling Software, part 1

- rtg (real-time GIPSY)
 - Contains precise models of GIPSY OASIS II
 - Can be embedded in real-time user equipment
 - X33 sub-orbital vehicle
 - NASA DC-8 SAR flights
Enabling Software, part 2

- rtnt (real-time Net Transfer)
 - Transfer GPS data from existing ground reference sites over the open Internet to JPL
 - Support LEO atmospheric occultations
 - Return 5 of the 6 data types at 1 Hertz, plus snr.
 - Phase resolution of 0.02 mm.
 - Range resolution of 1 mm.
 - Most LEO sites will have stable oscillators.
 - Provide users with global differential corrections over the open Internet from JPL
Why use the open Internet

• Reliability
 – Better short term reliability w/ VPNs, frame-relay
 • But not necessary to return 100% of the data
 – Better long term reliability w/ open Internet
 • Multiple world-wide sites provides data redundancy

• Costs
 – It’s FREE!
Overview of rtnt

Internet daemon
(monitor & distribution)

Internet daemon
(primary)

Internet daemon
(secondary)

1 sec traffic
remote clients
15 min traffic
local servers
Backup Server Operations

Internet daemon now primary

secondary daemon may requests re-routing of the entire network
Current network of ground receivers returning GPS data in real-time

- AOA Benchmarks
- Turbo-Rogues
- Ashtech Z-12s
Future Sites

• Bogoto, Columbia
• Vsat link to Easter Island
• UNAVCO installation in Uganda
• Other possibilities:
 cice, Mexico (TR) iisc, Bangalore, India (TR)
6-Hour Test of GPS-like Data Transmission from the Philippines

- 98.08% total
- < 1 sec 93.44%
- < 2 sec 97.01%
- < 3 sec 97.67%
- < 4 sec 97.92%
- < 5 sec 98.03%
Typical Real-Time GPS Data Latencies

- **pimo (Philippines)**
- **tidb (Australia)**
Typical Real-Time GPS Data Latencies

- hrao (South Africa)
- okc1 (Oklahoma)
gdgps s/w overview

remote clients → new sites

560 bit/sec. → 1 sec. → 1 min.

rtnt → remote users → rtg
User Positioning Tests

- Stochastically position stationary GPS receiver at known location
 - Same s/w used on DC-8 flights
 - Replace Satloc CONUS corrections with gdgps corrections
 - JPL mesa Ashtech Z-12
 - Also running Z-12 in building 238
Point-Positioning Results

Recent 6 hour test results from JPL mesa

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Sigma</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>-2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>North</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Vertical</td>
<td>10</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>

Units are in cms.
Point-Positioning Results

RMS of test results from JPL mesa

<table>
<thead>
<tr>
<th></th>
<th>18-May 12:00</th>
<th>18-May 18:00</th>
<th>19-May 00:00</th>
<th>19-May 06:00</th>
<th>19-May 12:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>North</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Vertical</td>
<td>20</td>
<td>13</td>
<td>14</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

Units are in cms.
15 hour time series of gdgps corrections applied to Satloc's Florida Site

- east (8 cms rms.)
- north (5 cms rms.)
- vertical (19 cms rms.)
Current Orbit Error

- 30 CMS over North Western Hemisphere
 - RMS of 3D RSS

- 35 CMS global orbit error
 - Tuning orbits should yield 30 CMS globally
Real-time and Post-processed Estimates of Goldstone's Wet Zenith Troposphere Delay

r.m.s. difference between truth and real-time solution: 0.95 cms

- precise wet zenith trop estimate
- rtg (slow) wet zenith trop estimate
Summary

- Open Internet is reliable choice to return GPS data for state-space dual-frequency global differential GPS corrections.
- Why is this better than WADGPS?
 - GPS satellites continuously observed.
 - Optimized for dual-frequency user.
- 10 CMS Rms. horizontal accuracy.
 - Anywhere, Anytime.
What's Next

- Commercial partnership to provide SIS.
- $1.4 M to implement NASA differential service (AIST NRA)
Acknowledgment

The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.