On Orbit Validation and Calibration of Ocean Color Sensors with Underflights of the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

Robert O. Green, Betina Pavri, and Thomas Chrien

Jet Propulsion Laboratory / California Institute of Technology
OVERVIEW

- Objective and Justification
- Approach
- Current Results
- Future Plans
- Discussion
Objective and Justification

• OBJECTIVE:
 – Calibrate and Validate the On Orbit Radiometric Characteristics of SeaWiFs with Underflights of NASA’s Calibrated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

• JUSTIFICATION:
 – Calibration is essential for the quantitative use of SeaWiFs data
 – Calibration in the laboratory of spaceborne sensors is challenging
 – Satellite sensors are subjected to trauma during launch
 – The Earth orbit environment is different the laboratory calibration environment
 – Through years of effort AVIRIS is demonstrated to be well calibration
 – AVIRIS can match the spectral and spatial observation characteristics of SeaWiFs
Approach

- Determine the calibration accuracy of AVIRIS with high confidence

- Underfly SEAWIFS with AVIRIS matching observation geometry
 - Issues: weather, satellite, aircraft, sensor, location

- Correct AVIRIS spectral image data to the top of the atmosphere

- Convolve AVIRIS spectral channels to SEAWIFS bands

- Determine and extract water with correct observation geometry

- Compare, analyze, repeat for monitoring
Activities

- SXR radiometric comparison Spring
- AVIRIS data set for Carder May
- SEAWIFS Underflight Green May
- SXR radiometric comparison Summer
- LXR radiometric comparison Summer
- SEAWIFS Underflight 990807
- SEAWIFS Underflight 990912
- CALCOFI overflight October
- SEAWIF Underflight October
- Analysis and Reporting
OVERVIEW

Solar Absorptions

Ozone Absorption

Ocean Radiance Spectrum

SeaWiFS Visible Near-Infrared Bands

AVIRIS Spectral Channels (224 from 370 to 2500 nm)

Wavelength (nm)
SEAWIFS 990807 Data Set
AVIRIS Data Set, Georectified
SEAWIFS 2 and 5 degree Common Observation
SEAWIFS Zone of Common Observation
AVIRIS 2 and 5 degree Common Observation
Preliminary SEAWIFS and AVIRIS Common Observation

R.O. Green COSPAR 20 July 2000
Preliminary AVIRIS and SEAWIFS Compare 990807

- AVIRIS circle 1 (µW/cm²/nm/ster) 990807

<table>
<thead>
<tr>
<th>band</th>
<th>aviris 2°</th>
<th>aviris 5°</th>
<th>seawifs 2°</th>
<th>seawifs 5°</th>
<th>fractional diff 2°</th>
<th>fractional diff 5°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.1402</td>
<td>8.1452</td>
<td>8.2575</td>
<td>8.2684</td>
<td>0.01420</td>
<td>0.01490</td>
</tr>
<tr>
<td>2</td>
<td>7.4555</td>
<td>7.4522</td>
<td>7.2321</td>
<td>7.2312</td>
<td>-0.03088</td>
<td>-0.03055</td>
</tr>
<tr>
<td>3</td>
<td>5.4870</td>
<td>5.4846</td>
<td>5.1213</td>
<td>5.1238</td>
<td>-0.07141</td>
<td>-0.07040</td>
</tr>
<tr>
<td>4</td>
<td>4.3141</td>
<td>4.3113</td>
<td>4.1201</td>
<td>4.1239</td>
<td>-0.04709</td>
<td>-0.04542</td>
</tr>
<tr>
<td>5</td>
<td>2.7290</td>
<td>2.7269</td>
<td>2.7491</td>
<td>2.7492</td>
<td>0.00730</td>
<td>0.00813</td>
</tr>
<tr>
<td>6</td>
<td>1.0046</td>
<td>1.0092</td>
<td>1.1296</td>
<td>1.1318</td>
<td>0.11069</td>
<td>0.10832</td>
</tr>
<tr>
<td>7</td>
<td>0.5032</td>
<td>0.5068</td>
<td>0.5409</td>
<td>0.5413</td>
<td>0.06972</td>
<td>0.06362</td>
</tr>
<tr>
<td>8</td>
<td>0.3117</td>
<td>0.3149</td>
<td>0.3456</td>
<td>0.3467</td>
<td>0.09805</td>
<td>0.09159</td>
</tr>
</tbody>
</table>

R.O. Green COSPAR 20 July 2000
AVIRIS Second Circle
Preliminary SEAWIFS AVIRIS Comparison Circle

![Graph showing the comparison between SEAWIFS and AVIRIS spectra. The graph plots the fractional difference in band transmission for different angles.](image)

- **aviris 2°**
- **aviris 5°**
- **seawifs 2°**
- **seawifs 5°**
- **fractional difference: 2°**
- **fractional difference: 5°**

R.O. Green COSPAR 20 July 2000
SEAWIFS and AVIRIS Timing

<table>
<thead>
<tr>
<th>Time Description</th>
<th>SeaWIFS</th>
<th>AVIRIS Circle 1</th>
<th>AVIRIS Circle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal UTC</td>
<td>17.199144</td>
<td>17.071019</td>
<td>17.176016</td>
</tr>
<tr>
<td>HH:MM:SS UTC</td>
<td>17:11:57</td>
<td>17:04:10</td>
<td>17:10:34</td>
</tr>
</tbody>
</table>
SEAWIFS AVIRIS Comparison 971002

<table>
<thead>
<tr>
<th>BAND</th>
<th>SEAWIFS Radiance</th>
<th>AVIRIS Radiance</th>
<th>AVIRIS Uncertainty</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.800</td>
<td>6.791</td>
<td>5.1%</td>
<td>12.9%</td>
</tr>
<tr>
<td>2</td>
<td>6.852</td>
<td>6.311</td>
<td>3.5%</td>
<td>7.9%</td>
</tr>
<tr>
<td>3</td>
<td>4.899</td>
<td>4.861</td>
<td>2.1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>4</td>
<td>3.995</td>
<td>3.972</td>
<td>2.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>5</td>
<td>2.753</td>
<td>2.711</td>
<td>2.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>6</td>
<td>1.248</td>
<td>1.193</td>
<td>2.3%</td>
<td>4.5%</td>
</tr>
<tr>
<td>7</td>
<td>0.641</td>
<td>0.601</td>
<td>3.6%</td>
<td>6.2%</td>
</tr>
<tr>
<td>8</td>
<td>0.449</td>
<td>0.412</td>
<td>3.5%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>
Accomplishments and Plans

- SXR radiometric comparison Spring
- AVIRIS data set for Carder May
- SEAWIFS Underflight Green May
- SXR radiometric comparison Summer
- LXR radiometric comparison Summer
- SEAWIFS Underflight 990807
- SEAWIFS Underflight 990912
- CALCOFI overflight October
- SEAWIF Underflight October
- Analysis and Reporting
Discussion

- FY00 MODIS Underflight
- Plans for ADEOS II Underflights
- ...