Copper Metallization
Can we trust it?

Electronic Parts And Packaging For Space And Aeronautic Applications Advanced Technology Workshop (ATW)

May 22-24, 2000

J.R. Lloyd
Jet Propulsion Laboratory
Office 514
Electronic Parts Engineering
Metallization

• Requirements
 Low resistivity
 • Process Compatibility
 Low resistivity
 • Reliability
 Low resistivity
 • Availability
 Low resistivity
Periodic Table of the Elements

In the periodic table, the elements are arranged in order of increasing atomic number. Vertical columns, headed by Arabic numerals, are called Groups. A horizontal sequence of elements is called a Period. The most active elements are at the bottom left of Group 1 and the top right of Group 17. The staggered line (Groups 13-17) roughly separates metallic from non-metallic elements.

Groups—Elements within a Group have similar properties and contain the same number of electrons in their outside energy shell.

- The first Group (1) contains hydrogen and the alkali metals.
- The last (18) contains the noble gases.
- Group (17) contains the halogens.
- The elements interverting between Groups 2 and 13 are called transition elements.

Periods—in a given Period, the properties of the elements gradually pass from a metallic to a non-metallic nature, with the last member of a period being a noble gas.

Key

<table>
<thead>
<tr>
<th>Name of Element</th>
<th>Color</th>
<th>Atomic Weight</th>
<th>Atomic Symbol</th>
<th>Atomic Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>Tan</td>
<td>232</td>
<td>Th</td>
<td>90</td>
</tr>
<tr>
<td>Protactinium</td>
<td>Red</td>
<td>231</td>
<td>Pa</td>
<td>91</td>
</tr>
<tr>
<td>Uranium</td>
<td>Yellow</td>
<td>238</td>
<td>U</td>
<td>92</td>
</tr>
<tr>
<td>Neptunium</td>
<td>Green</td>
<td>237</td>
<td>Pu</td>
<td>93</td>
</tr>
<tr>
<td>Americium</td>
<td>Black</td>
<td>241</td>
<td>Am</td>
<td>95</td>
</tr>
<tr>
<td>Bikridium</td>
<td>Green</td>
<td>249</td>
<td>Bk</td>
<td>97</td>
</tr>
<tr>
<td>Californium</td>
<td>Black</td>
<td>257</td>
<td>Cf</td>
<td>98</td>
</tr>
<tr>
<td>Einsteinium</td>
<td>Yellow</td>
<td>255</td>
<td>Es</td>
<td>99</td>
</tr>
<tr>
<td>Fermium</td>
<td>Green</td>
<td>257</td>
<td>Fm</td>
<td>100</td>
</tr>
<tr>
<td>Mendelevium</td>
<td>Black</td>
<td>258</td>
<td>Md</td>
<td>101</td>
</tr>
<tr>
<td>Nobelium</td>
<td>Green</td>
<td>259</td>
<td>No</td>
<td>102</td>
</tr>
<tr>
<td>Lawrencium</td>
<td>Black</td>
<td>263</td>
<td>Lr</td>
<td>103</td>
</tr>
</tbody>
</table>

22 May 2000
Top Ten Metals

Resistivity in \(\mu\Omega\text{-cm} \)
at 20°C
The Noble Metals

Copper
Cu
63.546
29

Silver
Ag
107.87
47

Gold
Au
196.97
79

22 May 2000
The Noble Metals

- Silver
 - Best Conductor
 - Diffuses incredibly rapidly through glass
 - forms dendrites in “real time”
 - Very susceptible to corrosion
 - especially in the presence of an electric field
 - Difficult to process
 Just Too Much Trouble
The Noble Metals

- The “most noble” of the metals
- will not corrode
- Fast diffuser though glass
- Serious poison to Si devices
- Just as much trouble as Cu
- resistivity not much better than Al

Not enough advantage over Al

22 May 2000
Noble Metals

• Copper
 – Second best Conductivity
 • almost as good as Ag
 – Poison for Si devices
 – Diffuses Rapidly through glass
 • Not as bad as Ag
 – Adheres Poorly

 If we have to put up with Noble metal hassles
 Cu is the best compromise
Suitable Metallization

In the absence of high T_c
high critical current superconductors
All we have is

Aluminum
Copper
and their alloys

22 May 2000
Aluminum

• Very Good Conductivity
 – Not as good as Noble Metals but close

• Easy to Process
 – Forms thin oxide that makes Al forgiving

• Adheres and does not diffuse through glass

• Does not affect Si too badly
 – Does not diffuse rapidly into Si

Very Poor Electromigration Resistance
Al Alloys

- Pure Al was not able to withstand high current densities necessary for use in Integrated Circuits
- Al alloys used instead
 - Al/Cu best choice/compromise
 - higher resistivity
 - processing more difficult
 - corrosion
 - Solved reliability problem

22 May 2000
Aluminum

• Good Conductor
 – Pure Al
 • 2.7 μm - cm
 – Al/Cu
 • Al/4%Cu = 3.5 μm - cm
 • Al/0.5%Cu = ~3.0 μm - cm
 • Other alloys not as good
Al and Alloy Electromigration

• Al
 - $\Delta H = 0.5$ eV
 - $t_{50} = 1$

• Al/Cu
 - $\Delta H = 0.7$ eV
 - $t_{50} = 100$

• Al/Cu sub-micron
 - $\Delta H = 0.9$ eV
 - $t_{50} = 1000+$

22 May 2000
Electromigration in sub-micron Al alloy conductors

- Line width is less than the grain size
- No continuous grain boundary diffusion pathway
- Diffusion is along Interfaces (more difficult path)
- Reliability is far superior to earlier wide line conductors

22 May 2000
Aluminum

• Very Reactive
 – Rocket Fuel
 – Very Difficult to Separate from Ore
 • Napoleon’s Dinnerware
 • Washington Monument
 – Reduces SiO₂
 • Forms Al₂O₃ at Al/glass interface
 • Acts as diffusion barrier
 • Promotes good adhesion
Cu Reliability

Electromigration

Leakage

Stress Voiding

22 May 2000
Electromigration

- The activation energy for diffusion tracks closely with the melting point for metals with similar structures
- All are FCC

\[t_{50} = A j^{-n} \exp \left(\frac{\Delta H}{kT} \right) \]

- Therefore it is expected that EM lifetime for Cu should be much greater than for Al alloys

22 May 2000
Electromigration

- Copper has the highest melting temperature of the best four conductors
 - Al 660C 933K
 - Ag 962C 1235K
 - Au 1064C 1337K
 - Cu 1084C 1357K
- Gives rise to great expectations
Activation Energy for Cu Diffusion

- Lattice
 - 2.3 eV
- Grain Boundary
 - 1.2 eV
- Surface
 - ~0.8 eV
Activation Energy for Cu Electromigration

- Measured activation energies vary considerably

$$\Delta H = 0.28 \text{ to } 1.26 \text{ eV}$$

Much lower than expected
Activation Energy for Electromigration

- Recent narrow line Al/Cu data activation energies have been observed in the range

0.9 to 1.0 eV

Higher than Cu values
Cu Electromigration

- Poor performance can be attributed to the nature of the Copper surface
 - Does not form adherent oxide
 - Adhesion of Cu to most materials quite poor
 - Narrow lines have large surface to volume ratio
 - Cu electromigration is critically dependent on the “quality” of the interface

22 May 2000
Cu and Al Electromigration

- Al/oxide surfaces are not diffusion paths
- Cu interfaces are major diffusion pathways
- Al reacts with and adheres to just about everything
- Cu does not adhere well to most materials
- Al electromigration is very microstructure dependent
- Cu electromigration is relatively insensitive to microstructure

22 May 2000
Cu Electromigration

• If the interface is well passivated, the electromigration behavior is adequate.
• Condition of the interface may be very process dependent
 – Interface reactions critical to performance
• Lot to lot variation will be serious
 – variation may be orders of magnitude
Electrochemical Migration

- Noble metal ions diffuse readily

\[J = \frac{DFC}{kT} \]

\[F = \nabla \mu = ZeE = \frac{kT}{C} \nabla C \]

\(\mu = \) chemical potential
Cu Diffusion

• Challenge
 – Make liner material as thin as possible
 • To preserve low ρ
 • Achieve low contact resistance
 • Must be continuous
 • Must be stable over time
 – High Temperature Stability
 • Processing
Reliability Issues
Diffusion Of Cu

• Interlevel and Intralevel leakage paths
 – Not an issue with Al alloys
 • Oxide formation precludes diffusion
 – Big issue with noble metals
 • especially Ag and Cu
 – Process variation dependent
 – Depends critically on barrier integrity

22 May 2000
Cu Diffusion

- Cu and Ag act differently in an electric field than in an unbiased environment
 - Diffusion coefficient is significantly higher
- SiO$_2$ biased
 - D at 260$^\circ$C = $\sim 10^{-14}$ cm2/s
- SiO$_2$ unbiased
 - D at 260$^\circ$C = $\sim 10^{-16}$ cm2/s
- Presumably Cu ionization is the reason
Cu Diffusion

• Noble metals are unlike Al
• Al forms Al$_2$O$_3$ that stops diffusion through SiO$_2$
• Al will reduce SiO$_2$ and other dielectrics and form barriers
• Noble metals diffuse readily through dielectrics, especially SiO$_2$
Cu Reliability

What you saw ain’t what you got!!!

- Cu structure is not stable.
 - There is considerable Cu grain growth at room temperature

- May be a function of the as deposited texture

22 May 2000
Stress Voiding

• Thermal Coefficient of Expansion
 – Si 3x10^{-6}/C
 – Al 23.6x10^{-6}/C
 – Cu 16.6x10^{-6}/C

• Biaxial Modulus
 – Al 112 GPa
 – Cu 191 GPa
Stress Voiding

\[\varepsilon_{th} = \Delta \alpha \Delta T \]

- For same temperature excursion as compared to Al
 - Cu has greater stress
 - Cu has less strain
Stress Voiding in Cu

Driving Force for voiding greater than in Al

Ultimate void size smaller

More but smaller voids

22 May 2000
-Bottom Line

When she's good,
She's very very good,
but when she's bad,
She's horrid

22 May 2000
In Space

- Copper Process is **MUCH** more variable than Al based metallization
- Cannot depend on large scale production to ensure consistency of product
- A bad Al day is a minor event, a bad Cu day is a disaster
- COTS without lot traceability cannot be used

22 May 2000
In Space

• Cooperation with vendor/designers will have to be instituted to ensure reliable operation

• Normal industry supplied information is not adequate
 – Based on average probabilities of failure
 • Many parts gives low numbers
 • MTBF is not applicable!!
In Space

- A program of frequent testing and analysis will have to be implemented
- Each lot will have to be qualified
- Al/Cu will have to be specified if lot specific data cannot be obtained.