Electrolyte and Electrode Passivation for Thin Film Batteries

W. C. West, J. F. Whitacre, B. V. Ratnakumar, E. Brandon, J. O. Blosiu and S. Surampudi

Electrochemical Technologies Group,
Center for Integrated Space Microsystems
Jet Propulsion Laboratory
California Institute of Technology
Pasadena CA 91109

May 2000
Overview

• Motivation for research
• Experimental
• Results
 • Impedance spectroscopy
 • DC breakdown
 • XPS
 • XRD
• Alternative passivation films
• Qualitative trends
• Summary
Motivation

• Provide chemical stability at anode for high conductivity, low reductive stability electrolytes.
• Provide chemical stability at cathode for high conductivity, low oxidative stability electrolytes.
• Identify robust passivation film tolerant to humid air or wet processing for multi-step patterning of thin film batteries.
• Examine if other Li electrolytes could be nitrided.
Experimental

Film Preparation:
• RF sputtered from Li$_2$CO$_3$ target
• Power levels of 75-200 W for 3” target
• Sputter gas: blends of CO$_2$, O$_2$, N$_2$, Ar
• Li electrodes thermally evaporated

Characterization:
• Impedance spectroscopy
• DC breakdown
• XPS
• XRD
• TEM
Impedance Spectroscopy Results

Bode plot of Mo|Li₂CO₃|Mo

Complex plane plots of Mo|Li₂CO₃|Mo

ELECTROCHEMICAL TECHNOLOGIES GROUP
Impedance Spectroscopy Results

Equivalent Circuit Model

Arrhenius plot of Mo|Li$_2$CO$_3$|Mo

ELECTROCHEMICAL TECHNOLOGIES GROUP
DC Characterization Results

DC breakdown of Mo|Li$_2$CO$_3$|Mo

DC breakdown of Mo|Lipon|Mo
DC Characterization Results

Tafel Plots corresponding to Electrolyte Oxidation

Tafel plots of various liquid electrolytes
X-ray Diffraction: Li$_2$CO$_3$ Sputtered in N$_2$ and O$_2$

Collected at Stanford Synchrotron Radiation Laboratory

- Crystalline Li$_2$CO$_3$ Observed, Grain size ~ 20 nm

ELECTROCHEMICAL TECHNOLOGIES GROUP
X-ray Photoelectron Spectroscopy

Li$_2$CO$_3$ Sputtered in 100% O$_2$

- Al Kα Radiation used
- After 15 min ion etch
- Film Surface

- Li$_4$
- C
- O$_{3.7}$

- ~1/1 Combination of Li$_2$CO$_3$ & Li$_2$O

ELECTROCHEMICAL TECHNOLOGIES GROUP
Qualitative Trends

• Increase in air stability, repeatability with increasing power (less Li$_2$O)
• Increase in target decomposition, bonding failure with increasing power
• Little variation on film properties with sputter gas composition
• Conditions yielding low deposition rate favored resputtering
Alternative Passivation Films

- LiF: poor conductivity
- LiF/Li$_3$PO$_4$ (Ar/O$_2$ sputter gas) poor oxidative stability
- LiF/Li$_2$CO$_3$ poor air stability/target stability

![LiF/Li$_3$PO$_4$ film](image1)

![LiF/Li$_3$PO$_4$ film](image2)
Summary

- Passivation films for improved anodic and cathodic protection were examined.
- Films are to be used in conjunction with high conductivity electrolytes.
- \(\text{Li}_2\text{CO}_3 \) films prepared via sputtering bear \(\text{Li}_2\text{O} \).
- Fully amorphous films could not be obtained.
- RF sputter power level chiefly determined film stability, while sputter gas composition did not change film properties.
- Increased RF power resulted in higher stability films, but also resulted in target degradation.

ELECTROCHEMICAL TECHNOLOGIES GROUP