Science with the
Space Interferometry Mission

Stephen Unwin
SIM Deputy Project Scientist

Jet Propulsion Laboratory
California Institute of Technology

April 21, 2000
Summary

- What is SIM?
 - Scientific drivers and performance
 - Brief summary of instrument

- How SIM performs astrometry

- How SIM does imaging

- SIM science program
 - Astrometric detection of extrasolar planets
 - Galactic dynamics
 - Rotational parallaxes of galaxies
 - Using gravitational lenses to probe dark matter
 - Stellar astrophysics

- SIM project status
What is SIM?

- SIM is a space-based optical interferometer for precision astrometry
 - 10-m baseline, Michelson beam combiner
- Launch mid-2006, with a minimum 5-year mission lifetime
- SIM has 4 basic operating modes
 - Global astrometry
 - Local astrometry
 - Synthesis imaging
 - Fringe nulling demonstration for future missions
- How does it operate?
 - SIM measures the white-light fringe position on 3 simultaneous baselines: 2 guides and 1 science
 - Using delay and angle feed-forward, the guides stabilize the science interferometer at the microarcsecond level
- For more information visit the SIM web site:
What is SIM?

Technology

Science

Technology maturation over the next few years will determine the ultimate achievable performance.
Artist’s impression of the SIM spacecraft, operating in a solar Earth-trailing orbit
Development of the SIM science program

- Bahcall Report (National Academy of Sciences, 1991) "The Decade of Discovery"
 - Recommended an astrometric mission with an accuracy of 3 - 30 microarcseconds (μas)
 - Search for planets around stars within 150 pc
 - Distances to stars throughout the Galaxy
 - Demonstrate technology for future interferometry missions

- SIM Science Working Group
 - Team of ~20 scientists with astronomy / technology interests
 - Develop Science Requirements and advise NASA
 - Final Report (February 2000)
 - now available in hardcopy or on SIM web site

- SIM Science Team
 - AO for Science Team released - February 2000
 - Proposals due - May 2000
 - Team selection - September 2000
SIM astrometric performance summary

- Global (all-sky) astrometry
 - Astrometric accuracy: 4 μas (end of mission)
 - Faintest stars: V = 20 mag
 (solar-type star at 10 kpc)
 - Yields distances to 10% accuracy, anywhere in our Galaxy

- Local (narrow-angle) astrometry
 - Measurements are made relative to reference stars (within ~1° field)
 - Astrometric accuracy: 1 μas in one hour
 - This angle subtends a length of 1,500 km at 10 pc distance
 - From Pasadena to Denver, at a distance of 30 light years

- Proper motion accuracy: 2 μas / yr
 - Motion due to parallax at 10 pc is detectable in a few minutes!
 - Speed of a fast car at center of our Galaxy: 25000 light years
SIM science summary

- Planet searching:
 - Search for astrometric signature of terrestrial planets around nearby stars
 - Statistics and properties of planetary systems
- Distances and Luminosities:
 - Spiral galaxy distances using rotational parallaxes
 - Calibration of the cosmic distance ‘ladder’
 - Ages of globular clusters
- Galaxy and star cluster dynamics and structure
 - Mass distribution in the halo of our Galaxy
 - Spiral structure of our Galaxy
 - Internal dynamics of globular clusters
 - Masses and distances to gravitational lenses
 - Dynamics of our Local Group of galaxies
- Imaging:
 - Emission-line gas around black holes in active galactic nuclei
 - Dust disks around nearby stars (nulling)
Measuring Distances in the Galaxy

- SIM will reach high accuracy on faint targets
 - 4 μas positions
 - 3 μas/yr proper motions
 - Limiting mag V = 20

- G-dwarf at 3 kpc:
 - V = 17.5, accuracy 1%

- KIII giant at 25 kpc:
 - V = 15, accuracy 10%

Combination enables demanding programs, like:
- rotational parallaxes
- tidal tails of disrupted dwarf galaxies
Astrometric Parameter Space

- SIM will reach
 - $V = 20$ and $4 \mu\text{as}$
 accuracy (global)
 - $1 \mu\text{as}$ accuracy (local)

- Enables demanding
 programs such as:
 - Terrestrial planets
 - Rotational parallaxes
 - ‘Tidal tails’ of disrupted
dwarf galaxies
Measuring distances to spiral galaxies using rotational parallaxes

Transverse velocity \(V_{\text{rot}} = \mu_{\text{rot}} D \)
Radial velocity \(V_{\text{rot}} \sin i \)
Transverse velocity \(V_{\text{rot}} \cos i \)

- **What?** Measure distance to a galaxy in units of meters - in a ‘single step’
 - Other methods involve a ‘distance ladder’ of several steps
 - Applicable to the nearest spiral galaxies - out to a few Mpc, to a few %

- **How?** Directly measure rotation of stars in galactic disk
 - SIM measures transverse proper motion: \(\mu_{\text{rot}} \)
 - Measure radial velocities by ground-based spectroscopy: \(V_{\text{rot}} \sin i \)
 - Ratio gives the distance directly

- **Why?** Scientific importance
 - *Independent* calibration of a population of Cepheids in an external galaxy
 - Cepheid stars are the single most important ‘standard candle’
 - Spiral galaxies are *themselves* used as ‘standard candles’ for more distant objects in the Universe
 - SIM will calibrate these ‘candles’
Using Gravitational Lenses to Probe 'Dark Matter'

- Microlensing is the gravitational bending of light by chance alignments of stars
- Events are detected by
 - Brightness enhancement (~days)
 - Astrometric perturbation (~weeks to months)
- Interpretation of current LMC lensing results is ambiguous
 - SIM would enable measurement of lens distances (in LMC or in our Galaxy?)
- Observing program:
 - Ground-based photometric monitoring program of many stars in the Large Magellanic Cloud (LMC)
 - SIM performs astrometry on detected events as 'targets of opportunity'

JPL April 21, 2000
Using Gravitational Lenses to Probe ‘Dark Matter’ (cont.)

- Apparent star position moves in a characteristic pattern with relatively large amplitude of \(\sim 100 \, \mu \text{as} \)
- Symmetry of track ‘broken’ by Earth orbit motion
 - due to lens parallax
 - Hence: distance to lens
- Derive: mass, distance, and velocity of the lensing object
Galactic Dynamics

- Study the ‘classical’ problems of size, mass distribution, and dynamics of the Galaxy, using stellar velocities

- Example:
 - Debris tail orbits (Sagittarius dwarf galaxy)
 - characteristic phase space signature
 - Distances to 5% at 10 kpc, for stars with $V < 20$
 - Proper motions to 0.1 km/s at 10 kpc
 - Combine with ground-based radial velocities

'Tidal tail' simulation:
Dwarf galaxy in orbit around the Milky Way
Imaging with SIM

- SIM forms images by *synthesizing* the equivalent of a 10-meter aperture
 - Fully diffraction-limited
 - Operation down to 4000 Angstroms
 - Fully phase-stable:
 - High dynamic range
Massive black holes in active galactic nuclei
Example: NGC 4261

- HST / WFPC2 images show an
dust disk surrounding a bright
emission-line region centered on
the nucleus
- HST spectra indicate nucleus
contains a massive black hole
- SIM can image the central 0.3
arcsec at 10 milliarcsecond
resolution
- Detect and measure black hole
mass using Doppler-shift of the
$H\alpha$ line
Planetary Systems: Questions

- Statistics of planetary systems
 - How common are planetary systems?
 - Are certain star types favored?
 - What is the distribution of planetary systems in the Galaxy?

- Characterizing planetary systems
 - What are the orbit radii?
 - Are the orbits circular or eccentric?
 - Are multiple-planet systems common?

- For multiple planet systems
 - What is the \textit{typical} mass distribution of planets in a system?
 - What is the \textit{typical} radius distribution?
 - Are the orbits co-planar?
 - \textit{Must} have astrometry to answer this
 - Are the planets stable?
Properties of Upsilon Andromedae System

- Stellar type F8V, 1.3 solar mass
- Distance = 15 pc
- Planetary companions:
 - b: mass $0.72 \, M_{\text{jup}}$ orbit radius 0.06 AU period 4.6 days
 - c: mass $1.98 \, M_{\text{jup}}$ orbit radius 0.83 AU period 242 days
 - d: mass $4.11 \, M_{\text{jup}}$ orbit radius 2.50 AU period 1269 days
Astrometric Detection of Upsilon Andromedae

- Astrometric signature:
 - b: amplitude = 2.3 μas radial velocity 70 m/s
 - c: amplitude = 89.3 μas radial velocity 58 m/s
 - d: amplitude = 557.5 μas radial velocity 70 m/s
- Distance: 15 pc
Toward Future Missions

- SIM will serve as a technology precursor for future interferometers in space
- A direct precursor to the Terrestrial Planet Finder
- Demonstrate:
 - Operation of a Michelson interferometer in space
 - Fringe nulling
 - Control of thermal and vibration environment
 - Synthesis imaging in space
 - Precision deployments
 - Angle and pathlength control
Conclusions

- SIM is a space-based optical interferometer for precision astrometry
 - 10-m baseline, Michelson beam combiner
- Launch mid-2006, with a 5-year mission lifetime
- SIM has a broad science program
 - Astrometric detection of extrasolar planets
 - Detect planets with a range of masses down to a few Earth masses
 - Galactic dynamics
 - Rotational parallaxes of galaxies
 - Using gravitational lenses to probe dark matter
 - Stellar astrophysics
 - etc........
- SIM will serve as a technology precursor for future interferometers in space