Connecting the Sun and the Solar Wind: Latitudinal Profiles of Density and Velocity

Shadia Rifai Habib1 (617-395-7348; shabbi@cfan.harvard.edu)
Richard Woo1 (617-395-7348; rwoo@small.jpl.nasa.gov)
1Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 15, Cambridge, MA 02138
2JPL/Caltech, 4800 Oak Grove Dr., Pasadena, CA 91109

A comparison of the latitudinal variation of Ulysses density measurements and polarized brightness (PB) observations of the inner corona covering the time period of the Ulysses slow scans of the south (-70° to -80°) and north (80° to 90°) polar regions of the Sun in 1992-1994 and 1995 respectively, when the wind speed exceeded 850 km/s, is presented. A 27 day running average was used for the Ulysses data while the corresponding PB measurements were averaged over the two time intervals. A remarkable similarity between the coronal and in situ density latitudinal profiles emerges from this comparison, with a clearly defined transition between the radial extension of the polar coronal holes and the surrounding quiet Sun. The distinction between coronal holes and quiet Sun is also evident in the latitudinal profiles of velocity.

Anticorrelated with density, the solar wind speed is highest within the regular extent of the polar coronal holes and decreases gradually beyond their boundary. The comparison between density and velocity profiles thus provides an explanation for the origin of the puzzling systematic decrease of fast wind speed with decreasing latitude reported in earlier investigations of the Ulysses data. Given that the regular extent of both coronal holes and quiet Sun is preserved from the Sun out into interplanetary space, these results provide unambiguous evidence that the fast solar wind detected at mid latitudes by Ulysses around solar minimum originates from the quiet Sun, while the fast wind at latitudes above 60° has its origin in the coronal polar holes. Furthermore, comparison of the latitudinal profile of the radial magnetic field with the density profile also shows a surprising similarity, with a minimum within the radial extensions of the coronal hole boundaries, implying that the magnetic field linked to the fast solar wind is weakest in the polar regions of the Sun.

American Geophysical Union
Abstract Form

Reference #: 9514
1. Spring Meeting 2000
2. AGU-00108408
3. (c) Shadia Rifai Habib
 Harvard-Smithsonian Center for
 Astrophysics, 60 Garden St.,
 MS 15
 Cambridge, MA 02138
(b) 617-395-7348
(c) 617-395-7049
(d) shabbi@cfan.harvard.edu
4. SH
5. (a)
6. (b) 2164, 2169, 7509, 7611
(c)
6. N/A
7. 0% published elsewhere
8. $0
 Shadia R. Habib
 Visn
 XXXX XXXX XXXX 2489
9. C
10. Please schedule before the paper by
 Woo and Habib, Connecting the
 Sun and the Solar Wind:
 Longitudinal Variations of Density
 and Velocity
11. Regular author

Data received: March 9, 2000
Data formatted: March 9, 2000
Form version: 1.0