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Abstract 
This  paper  presents a new  approach  for  achieving 

distortion-invariant  recognition  and  classification. A 
test  example  to be classified  is  viewed  as a query in- 
tended  to  find  similar  examples in the  training  set  (or 
class  models  derived  from  the  training  set).  The  key 
idea  is  that  instead of querying  with a single  pattern, 
we construct a more  robust  query, based on  the  fam- 
i l y  of patterns  formed by distorting  the  test  example. 
Although  query  execution  is  slower  than if the  invari- 
ances  were  successfully  pre-compiled during training, 
there are significant  advantages in several  contexts:  (i) 
providing  invariances in memory-based  learning, (ii) 
in model  selection,  where  reducing  training  time  at  the 
expense of test  time  is a  desirable trade-off,  and  (iii) 
in enabling  robust, ad hoc  searches based on  a single 
example.  Preliminary  tests for memory-based  learning 
on  the NIST handwritten digit  database  with a limited 
set of shearing  and  translation  distortions produced an  
error  rate of 1.35%. 

1 Introduction 
Achieving invariances to  certain  types of distortions 

by providing  synthetically-distorted  training  examples 
to  a  learning  system is an  approach  that  has  met  with 
some success. For  example,  LeCun  supplemented the 
NIST handwritten digit  set  with ten  random distor- 
tions of each training  example  to  encourage his LeNet 
system to  learn invariances to  translation, scaling, and 
skewing [5]. The resulting  net  produced  the lowest 
error  rate (0.7%) reported for the  dataset.  In  the 
context of support vector  machines, the use of “vir- 
tual  supports”, which are  generated post-learning by 
applying  distortions to  each support  vector,  has also 
shown  promise [8]. 

In  this  paper we explore a related  but novel idea 
that involves applying  a  dense  set of distortions to 

each test  example at run-time.  Since a test  example 
is essentially a query that is intended to  find exam- 
ples or class models that  are similar to  the  probe,  this 
approach  can  be viewed as a way to  generate a  more 
robust  query that  “understands” how the  test  example 
might have looked if it were collected/generated  un- 
der different circumstances.  Rather  than  burdening 
the  learning  system  with  trying to know how all in- 
stances of an  object class could look under all  possible 
distortions, we focus in on a particular instance  and 
ask how that instance  could look under  the possible 
distortions. 

Shifting the responsibility for handling  invariances 
from the  training side to  the query  side will cause an 
increase in query  execution  time, but  there  are a num- 
ber of significant  advantages. In memory-based  learn- 
ing  with  a  large reference library,  e.g., a fingerprint 
database,  expanding  the  library to  include  all  distor- 
tions would be  too expensive.  Trying to  trade space 
for time by generating  distorted versions of each li- 
brary  instance at run-time would also be  prohibitive. 
Note that in our  approach, only the  test example is 
distorted, so there is a low space  requirement,  and 
the  time cost of generating  distortions is amortized 
because the  same jittered  query is made  against each 
instance of the reference library. 

One of our  primary  motivations for query-side jit- 
tering is to allow quick model  selection during  training 
(moving the invariances to  the query  side  avoids  inflat- 
ing the  training  time). As an example,  consider  using 
cross-validation to select an  appropriate  distance ker- 
nel. In  the  traditional  approach, we would use a train- 
ing  set that  has been  greatly  expanded  (through  the 
inclusion of distortions) to  learn, for example, a radial 
basis function  (RBF)  representation using  each of a 
number of potential  kernels.  Evaluation of the result- 
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ing  RBF’s over  hold-out  sets would enable selection of 
the  “best”  kernel.  With  the new approach we would 
use  only the raw  training  set  to  learn  RBF’s using 
each potential kernel and  then  evaluate  these  RBF’s 
over the hold-out sets using jittering  on  the  test ex- 
amples.  Instead of multiplying the  training  time by 
the number of jitters,  the  test  time, which  is typically 
much shorter, is multiplied.  Ultimately, we envision 
using this  procedure  to  do large-scale model selection 
via  “racing” [6, 21, which  will  allow quick rejection of 
inferior hypotheses  based  on a partial  evaluation over 
the hold-out set. 

Model selection could also include cross validation 
to decide  which candidate  distortions  are useful and 
worth  the  time  cost.  Note  that some distortions may 
actually  be  harmful,  e.g., 180  degree rotations will 
cause  confusion  between the digits 6 and 9. Query- 
side  jittering will enable  exploration of more  candi- 
date  distortion  sets  than would be possible by train- 
ing  with  expanded  training  sets  (e.g., using  some pre- 
determined  set of distortions). Once a useful set of dis- 
tortions  has  been  found,  the invariances  can  be “com- 
piled” back onto  the model side by relearning  on  a 
training  set  expanded by the useful distortions. 

Another  scenario, which blurs  the  distinction be- 
tween  query-side and  training-side  jittering, involves 
construction of ad hoc  queries  from  a single example 
of an  object of interest. For example,  a  user  might 
identify an  object in an  image  and  ask  an  automated 
system to find similar  objects.  With  just  a single ex- 
ample,  the  system  does  not have  much to go on since 
there is no  knowledge of how the  object could vary. 
However, if the user also specifies a set of (partial) 
invariances that  the  object should  satisfy,  the  system 
can  derive a more  robust model to use in its  search. 
This  idea is discussed in the context of scale invariance 
in  [l]. An added benefit is that  the desired  invariances 
are specified at run-time. 

Finally,  it  may  be easier to  handle  large  distortions 
from the query-side  rather  than  the  training-side.  In 
particular,  a  learning  algorithm may be  incapable of 
generalizing to  large  distortions even if it is provided 
with a large  number of training  examples.  In LeNet5, 
training  examples were all pre-aligned through cen- 
troiding  and  deslanting. It is not explicitly stated,  but 
inclusion of this  step  probably  indicates  that  large dis- 
tortions  cannot  be  handled  directly by their  learning 
algorithm. 

2 Kernel  k-Nearest-Neighbors Using 
Eigen-Digits 

For simplicity, this  paper explores  query-side dis- 
tortions (Le. jitters)  within  the  context of k-nearest- 

neighbors classification [3]. 
For generality, we employ  nearest-neighbors  using 

the  large  space of dot-product  kernel distance  metrics, 
as first suggested in [9]. The  distance between  two 
d-dimensional feature  vectors xi and xj  is defined  as: 

with  kernel  function K(zi,zj) = K(z? * Z C ~ ) .  For 
example,  a polynomial kernel is defined as K ( z )  = 
zp + b, for suitable  parameters  p  and  b.  The  same 
relative  distance  orderings  as  standard  Euclidian dis- 
tance  (without  the final square  root) is obtained from 
distK(zi, zj) using p = 1 and b = 0 for this kernel. 
Furthermore, using p = 2 gives the Euclidian  distance 
between  two  expanded  vectors of size O(d2) ,  each  rep- 
resenting  every  product of one or two  features from 
the  corresponding  original vectors xi and x j .  Various 
values for b correspond to different relative  weight- 
ings of each  such product.  Thus,  dot-product kernels 
provide  nonlinearities  in a computationally-efficient 
manner, by squashing  dot-products of the original  d- 
dimensional feature  vectors - without  requiring ex- 
plicit representation of the underlying  large  (possibly 
infinite) expanded  dimensionality. Other common ker- 
nels include  equivalents for 2-layer radial  basis  and 
sigmoidal  neural  networks. 

For a d-by-1  query  vector Z, and a d-by-N train- 
ing  set  matrix B ,  let  B(:,i)  indicate  the  i-th d-by- 
1 column-vector of B. Define the corresponding 1- 
by-N kernel  distances distK(z,,B) = [dzstK(s,, B ( :  
, l ) ) ,  ..., distK(z , ,B(: ,N))] .  This  vector distK(z,,B) 
can  be  obtained simply by first computing:  the  l-by- 
N vector of dot-products P,,B = ZT * B ,  the  scalar 
p, , ,  = ZT * x , ,  and  the 1-by-N ~ B , B  = sum(B. * 
(Note  that ~ B , B  can  be efficiently pre-computed  once.) 
Applying the kernel squashing  function K(z) to each 
element of those  three  resulting  dot-product  vectors, 
and  then combining them  according  to  the definition 
of kernel distance, yields vector distK(z,, B ) .  Thus, 
the  remainder of this  paper focuses  on computing  (ap- 
proximating) the  dot-product p , , ~ .  In  this  paper, 
the  k-nearest-neighbor classification of zq is the most- 
common  label of the k  examples  B(:,i)  with  smallest 

Brute-force computation of p , , ~  corresponds to  
simple linear scanning of the  entire  training  set, which 
involves O(d*N) effort for classifying each query. 
Standard  speedups,  such  as  kd-trees,  do  not  apply well 
in our  context,  both  because  the  feature  dimensional- 
ity  (d) of our  domains is too high and  because  the 
kernel distance  metrics  are  not  Euclidian  in  the origi- 

‘The  operator .* denotes element-by-element multiplication 
as in MATLAB. The  summation is taken down the columns of 
B. * B.  

diStK(Zi, Zj)  = K(Z2, Zi) - 2 * K(Zi, Z j )  + K(Zj, Z j ) ,  

distK(z,, B ( : ,  i ) ) .  



nal  feature  space. So, instead, we consider  techniques 
similar to  those of eigen-faces [12, 131. Namely, we use 
Singular Value Decomposition  (SVD) to  decompose 
(or  approximate) B into a product UB * S B * V ~ ,  where 
U B ,  SB, vz are respectively,  d-by-kB, kB-by-kB, and 
kB-by-N. For k~ < d,  one  can  more efficiently (but 
approximately)  compute p q , B  as (x: * U B )  * (SB * v:), 
with  only O(d * k~ + kB2 * N )  complexity2.  One nov- 
elty in our  approach is that we also  do SVD on the 
query, as will be discussed later. 

3 Query  Jittering 
Nearest-neighbor classification should pick the k 

training  examples  with  the smallest  distance to any 
jittered version of the query.  To obtain some prelimi- 
nary  results  on  image  data, we focussed on the follow- 
ing  shearing  and  translation  jitters. 

Horizontal shearing involves shifting left or  right 
each row of a two-dimensional  image by certain dis- 
crete  numbers of pixels, such that all the shifts  corre- , 
sponding to each row together  approximate some  slant 
angle (with zero  angle  being  vertical at  the center of 
the horizontal-axis).  In  particular, we consider  those 
for which the  bottom-most row is shifted  in  each pos- 
sible  discrete  amount. For example, for a 28x28 im- 
age,  this yields 28 jittered versions  (including the orig- 
inal). We mass-recenter the resulting  sheared  images 
(so that  the average  location of the pixel intensities is 
the center p i ~ e l ) ~ .  Such  shearing is a  fast  approxima- 
tion  that  does  not  change  the pixel intensities  (only 
their  locations)  and is particularly common for do- 
mains  such as  character recognition,  where  horizontal 
lines should be  retained. 

Box-shift translation involves shifting  the  entire 
image  horizontally  and/or vertically  some  discrete 
amount. A “3x3” box jitter  means shifting 0 or 1 
pixels along  each of the two  axes. We perform  box 
jittering  on  top of each  sheared  jitter. 
3.1 Efficient Jittering via SVD 

For a given number J of jitterings of a given query, 
the key challenge is to  efficiently compute  a  sufficient 
approximation of the  J-by-N distance  matrix. One 
technique is to  prefilter: only bother  computing dis- 
tances between  query jitters  and  those (say 1%) of 
the  training  examples which are closest to  the original 
query  vector.  In  tangent  distance work [ll], this is 
reasonable  because  they  already  assume the distance 
grows  smoothly as  the query  distorts.  Query blur- 
ring  often  helps  such  pre-filtering work well. We have 

21n practice, to minimize approximation  errors, we SVD the 

3We also assume that each original image is normalized by 
training examples  for each class separately. 

its standard deviation. 

explored the following “query  compilation”  method 
which does not  require such  smoothness. 

Let A, be the  J-by-d  transposed  matrix of jitters 
of query x g  and B be  the d-by-N  matrix of training 
data. Brute-force computation of the  J-by-N distance 
matrix would involve O( J * d* N )  operations.  Approx- 
imating B by SVD (retaining k~ components)  reduces 
time complexity to O ( J  * d * k g  + J * k g  * N ) .  By 
also  approximating A, using  SVD (retaining k~ com- 
ponents), one  can  reduce this complexity to O( k~ * d * 
k~ + k~ * k~ * N + J * k~ * N ) .  This  still involves 
O ( J  * N ) ,  but can be k ~ / k ~  faster.  It  can  be rea- 
sonable, for example, to have k g  = 40 while k~ = 4, 
since the query  SVD  need only minimize  variance for 
related  jitters of one  example. 

To  make  this work, the SVD of A, into UA * SA * 
VI must  be  fast. We speed up  this  step by taking 
advantage of two  facts: we only need k~ components 
and UA need not  be  orthogonal for our  purposes.  This 
is an ideal  application for the recent EMPCA  method 
[7], which has complexity O ( J  * d * k ~ ) .  Furthermore, 
it is an  iterative  EM  algorithm for which a couple of 
iterations often yields reasonable  approximations of 
UA and SA. To  best  approximate A,, we take  the UA 
and SA resulting  from a few iterations of EMPCA  and 
then  compute VA = Si1 * U x  * A. 

Ideally, one would determine a good kA  for each 
query  (e.g., by looking at drop-off in eigenvalues). 
However, our  current  implementation  assumes a fixed 
user-supplied kA. Nevertheless, the  potential  to select 
a query-dependent kA is another  advantage of doing 
query-side (vs  training-side)  jittering. 

4 Results: MNIST digit  recognition 
The MNIST data set [4]  is a well-studied bench- 

mark  that consists of 60,000 training  examples  and 
10,000 test examples.  Each  example is a 28x28 pixel 
image  with 256 grey-levels and  precentered  by  mass. 

Results  on the MNIST data  set using  various  query 
jitters  are shown in  Figure  1,  along  with some key 
results of previous  studies. 

As in [5], we explored  pre-applying  shearing  distor- 
tions to  training  and  test  datasets. Deskewings refers 
to replacing an example  image  with the sheared ver- 
sion for which the first  principal  axis is as vertical 
as possible. As expected, the SVD’s of the deskewed 
training  data were somewhat  better  than for the origi- 
nals (lower reconstruction  errors  and  faster eigenvalue 
drop-off, for each  class). 

The 2.37 vs 2.4 result  suggests that  using 40 compo- 
nents  from  SVD of the  train  set  (per class) may give as 
much benefit as deskewing the  datasets,  presumably 
because of the feature-extraction  benefits of SVD. 



errors 
5.0 

POLY  p train comps box jitter deshear jitter deskew method 

1 all Y 3-NN 2.4 
1 all 3-NN 

1.53 

NA NA random  (training) boost-LeNet4 0.7 
9 NA random  (training) virtual SVM 0.8 

NA NA LeNet4 1.1 
1 NA implicit tangent  dist  1.1 
4 NA random  (training) SVM 1.4 
1 40 3x3 28 1-NN 1.35 
1 40 3x3 Y 1-NN 

Figure 1: Errors  rates  on MNIST  10,000 test examples 
See [4, 51 for details of methods listed  in the upper  and lower sections of the  table. 

The 1.66 vs 1.92 result  suggests that query-time 
shear  jitters  are  more effective than deskewing. The 
1.35 vs 1.53  result  suggests that  this holds even when 
some  box jittering is done  as well. 

Unfortunately,  our  current implemented class of 
query  jitters  (translation  and  shearing  rotation) is a 
subset of those  used in the  reported  tangent  distance 
result  (which  includes  scaling and line thickness as 
well). So we do  not yet know how much our  1.35 
result  might  improve  beyond tangent  distance’s 1.1, 
using all  such jitters. 

The best  reported  results involve random  distor- 
tions to  the  training  set  (about 10  per training exam- 
ple).  Due to  both  time  and space  limitations,  system- 
atic  distortions of the  train  set would be infeasible. 
Virtual  support  methods for SVM’s attempt  to over- 
come this issue by only distorting  supports; however, 
systematic, densely-sampled  distortions will still  often 
be infeasible on  the  training  set side. 

We found that using  various p > 1 for the polyno- 
mial  kernel  distance has  not provided significant test 
error  reduction  (contrasting  reported  support vector 
machine results). We postulate  that  perhaps such ker- 
nels may be  more effective when used in the  context 
of maximum-margin classifiers per se, such as SVM’s. 
For example,  although [lo] reports good results using 
such kernels for nonlinear  SVD, the  resulting SVD fea- 
tures were ultimately feed into a linear SVM to achieve 

those  results. 

5 Conclusions 
The  related  tangent  distance  approach considers lo- 

cal distortions of both  the  training  and  query exam- 
ples, but only for relatively  minor distortions for which 
smoothness  can  be  assumed.  In  contrast,  our work 
here  tries to avoid making  such an  assumption,  and 
instead  capture local  invariances in a query-specific 
manner,  through explicit  procedural  expansion  (jit- 
tering) followed  by structural compression  (SVD). 

Even when query jittering is no  faster  than  alter- 
natives for a given query, it might  still  lead to faster 
overall training,  through use of “racing”  and  amortiz- 
ing that cost over many  models during model selec- 
tion.  A  motivation of this work is that  query  jittering 
during  racing  (using a cheap  memory-based method 
such as nearest-neighbors)  might  help  filter a vast 
space of alternative  distance  metrics for a final  more- 
sophisticated  memory-based  method  (such as  support 
vector machines). To make this work well, there would 
need to  be a strong  correlation between  distance  met- 
rics that work well in  both  methods. 

A key limitation of this  current work is that ul- 
timately  our use of SVD cannot overcome the com- 
binatorial  growth in the number of jitters ( J )  for a 

4For example, our 1.35 MNIST result took 40 hours on a 
Sun Sparc UltraGO. 



135 images 

Figure 2: Test errors for 1.35 result 
Upper  right (of each  box):  first  digit is (mis)classification, second is true  label; 
lower left (of each  box):  example  number (from size 10,000 test  set). 

given  query,  which  arises  from  cross-product  nature of References 
combining  jitter classes. Within  our  formalism,  the [I1 
challenge is to  reduce the effective J so that  the final 
distance  matrix is no  longer  linear in J (i.e. avoid con- i21 
structing  the  entire  J-by-N  matrix). We are  currently 
experimenting  with new adaptive  methods which do 
such  reduction in the effective J ,  by treating each jit- 
ter  as  a  training  example from  which to learn to  better [31 
interpolate  the UA mapping  matrix over an even larger 
(implicit) J .  [41 

~~ 
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