STARDUST

STARDUST - Capture and Return of Wild-2 and Interstellar Samples

IAU 181 Colloquium, University of Kent at Canterbury, UK
STARDUST

SCIENCE ADVISORS

Arden L. Albee (California Institute of Technology)
John R. Cronin (Arizona State University)
Peter Eberhardt (University of Bern)
Robert O. Pepin (University of Minnesota)
Jerry J. Wasserburg (California Institute of Technology)
Robert M. Walker (Washington University)
John A. Wood (Smithsonian Astrophysical Observatory)
STARDUST

SCIENCE INVESTIGATORS

Donald E. Brownlee (University of Washington) Principal Investigator
Peter Tsou (Caltech Jet Propulsion Laboratory) Deputy Principal Investigator
John D. Anderson (Caltech Jet Propulsion Laboratory) Dynamics Science Lead
Benton C. Clark (Lockheed Martin Astronautics) Co-Investigator
Martha S. Hanner (Caltech Jet Propulsion Laboratory) Co-Investigator
Friedrich Horz (NASA Johnson Space Center) Co-Investigator
Jochen Kissel (Max Planck Institut fur Kernphysik) CIDA Lead
J. Anthony M. McDonnell (University of Kent) Co-Investigator
Ray L. Newburn (Caltech Jet Propulsion Laboratory) Imaging Lead
Scott A. Sandford (NASA Ames Research Center) Co-Investigator
Zdenek Sekanina (Caltech Jet Propulsion Laboratory) Co-Investigator
Anthony J. Tuzzolino (University of Chicago) DFM Lead
Michael E. Zolensky (NASA Johnson Space Center) Co-Investigator
MISSION SCIENCE SUMMARY

COMET ENCOUNTER

- Aerogel Collector, Tsou
 Wild 2 sample collection/return to Earth
 >1000 particles >15μm
- Comet Interstellar Dust Analyzer (CIDA), Kissel
 Mass spectra of individual particles
- Imaging Camera, Newburn
 - High resolution nucleus images
- Dust Flux Monitor (DFMI), Tuzzolino/McDonnell
 - Dust flux with PVDF and acoustic sensors
- Dynamics Science, Anderson
 - Integrated and individual dust flux
 - May be cometary mass
MISSION SCIENCE SUMMARY CRUISE

- Collection of interstellar dust
 - Contemporary interstellar dust > 100 particles
- CIDA mass spectra of interstellar dust
- Interplanetary and IS dust detection with DFMI
- Earth anomaly and solar conjunctions
SCIENCE RETURN HOPES
CIDA

- WILD-2
 - Comet dust composition
 - Comparison with collected samples
 - What volatiles are lost in collected samples
 - Composition of particles too small to collect
 - The nature of CHON
 - Comparison with Halley and interplanetary dust spectra

- Interstellar Dust Composition
 - Major elemental composition
 - Relationship between CHON and silicate materials
 - Importance of SiC and grains formed in high C/O environments
SCIENCE RETURN HOPES
Imaging & Dust Flux

- Imaging Camera
 - Gas/dust source regions
 - Crust structure and surface processes
 - Detection of impact craters on an unusually old SP comet surface
 - Coma structure

- DFMI
 - Size distribution and flux at Wild-2
 - Meteor stream discovery during cruise
 - Radial distribution of interplanetary dust
CIENCE RETURN HOPES

Samples

- How do cometary solids compare with compositional fractionation trends seen in meteorites?
 - Volatiles
 - Refractories Ca, Al, Ti
 - Fe/Si

- Comparison with IDPs and meteorites
 - What fraction of comet dust is composed of preserved IS grains
CIENCE RETURN HOPES

Samples

- Performance of Aerogel Collectors
 - Captured dust flux
 - Degree of capture modification
 - Survival of volatiles

- Performance of Foil Collectors
 - Degree of particle capture
 - Capture modification
Mission Scenarios (Loop 1)

Science
CIDA #1
- L+45 - 144 d
- Dur: 99 d, Unit area: 52 d
- Vimp: 58.7 - 42.1 km/s

ISP #1
- L+403 - 469 d
- Dur: 66 d, all full grid
- Vimp: 11.7 - 9.9 - 10.1 km/s

DFMI
- EGA, L+709
- dust particles exp.
- +x // sc velocity
Mission Scenario (Loop 2)

TCM-8 = DSM3
70 m/s, 7/4-6/03

TCM-9
17 days

Earth

STA R DUST

EGA

TCM-6

CIDA-2
145 days

Anne frank

ISP-2
135 days

9.5d

TCM-7

science

CIDA #2
- L+769 - 914 d
- Dur: 145 d, Unit area: 74 d
- Vimp: 57.1 - 41.1 km/s

ISP #2
- L+1267 - 1402 d
- Dur: 135 d, Full grid: 127 d
- Vimp: 14.8 - 9.3 - 9.6 km/s

Annefrank
- L+1364
Instrument Objectives

INTACT CAPTURE OF
COMETARY DUST
ELEMENTAL COMPOSITION
MORPHOLOGY
ISOTOPIC COMPOSITION
MINERALOGY
REFRACTORY ORGANICS

INTERSTELLAR DUST
ELEMENTAL COMPOSITION
MORPHOLOGY
ISOTOPIC COMPOSITION
MINERALOGY
Spacecraft
Sample Return Capsule Canister/Sample Trays

STOWED

DEPLOYED

Clamshell Hinge

Boom Drives

Collector

STARDUST Sample Instrument

SM@L - 7
Dust Collection Modes

Interstellar Dust

Cometary Dust
Gradient/Graded Aerogel

Foil 100μ
1100 Al

Tray Rib
Bare 6061-T651 Al

3 cm

1 cm

.3 cm

Interstellar Particles

.3 cm

Gradient SiO₂ Aerogel

50 mg/ml, Base
20 mg/ml, Base
~5 mg/ml, Surface

~5 mg/ml, Surface

Cometary Particles

Graded SiO₂ Aerogel

2 cm

4 cm

STARDUST Sample Instrument

SM@L - 13
THE UNIVERSITY OF CHICAGO DUST FLUX MONITOR INSTRUMENT (DFMI) FOR THE STARDUST MISSION

DFMI CHARACTERISTICS

WEIGHTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics Box</td>
<td>1.200 kg</td>
</tr>
<tr>
<td>Sensor Unit</td>
<td>0.332 kg</td>
</tr>
<tr>
<td>Acoustic Sensors</td>
<td>0.064 kg</td>
</tr>
<tr>
<td>Harness</td>
<td>0.165 kg</td>
</tr>
<tr>
<td>Total</td>
<td>1.761 kg</td>
</tr>
</tbody>
</table>

POWER

1.8 W

ELECTRONICS BOX (EB) DUST SENSOR UNIT (SU)

TWO ACOUSTIC SENSORS

PVDF Sensor

Sensitive area = 200 cm²
Sensor thickness = 28 µm
Sensitive area dia. = 15.94 cm

Sensitive area = 20 cm²
Sensor thickness = 6 µm
Sensitive area dia. = 5.04 cm