Comparing the performance of airborne and spaceborne imaging spectrometers (AVIRIS, Hymap, Hyperion/EO-1, WF-1/Orbview-4, COIS/NEMO, and HYDICE)

Tom Chrien
Jet Propulsion Laboratory
California Institute of Technology
NEMO/COIS

Naval EarthMap Observer (NEMO) satellite
- Demonstrate the use of hyperspectral imaging
 - Characterization of the littoral environment
 - On-board processing using ORASIS algorithm
 - Dual-use (DOD and commercial) applications
 - Real-time downlink of data and end-products
- Sun-synchronous, 605 km altitude, 10:30 am equator crossing
- Seven day repeat coverage
- Coastal Ocean Imaging Spectrometer (COIS) under development at SAIC/San Diego
NEMO Mission Drivers

- Ocean and shoreline character
 - 5% ocean reflectivity (fairly dark)
 - Straylight, polarization, and calibration impacts
- Trade spatial resolution
 - Wider swaths
 - Higher SNR
- 3 collection modes (60 m, 30m, 30m full)
 - To fulfill mission objectives
COIS Details

- Pushbroom imaging spectrometer
- 0.4 to 2.5 μm range, 10 ± 2 nm resolution
- All-reflective optics
- Two spectrometers, dichroic after beam splitter
- Offner spectrometer form, holographic grating
- Silicon and MCT area arrays 1000 samples wide
- Boresighted to 5 m spatial resolution pan imager (PIC)
COIS and PIC Sensors On NEMO

COIS AND PIC ENCLOSURE REMOVED FOR CLARITY

Drawing: September 19, 1988 at 14:00 ZED 023 PM
NEMO References

Website: http://nemo.nrl.navy.mil

Hyperspectral remote sensing technology (HRST) program and the Naval EarthMap
Observer (NEMO) satellite (Paper #: 3437-44)
Naval EarthMap Observer (NEMO) science and naval products (Paper#: 3437-45)
On-board hyperspectral compression and analysis system for the NEMO satellite (Paper #: 3437-46)
NEMO satellite sensor imaging payload (Paper #: 3437-47)

Contact: Tom Wilson, wilson@ncst.nrl.navy.mil
Orbview-4/Warfighter-1

- Airforce Research Lab Sponsor
- Demonstration of hyperspectral technology for target detection and terrain categorization for the military
- WF-1 is a tag-along to Orbview-4 Satellite
 - 1 meter panchromatic
 - 4 meter multispectral
- Orbital Sciences is Prime Contractor
- WF-1 currently under construction at Northrop-Grumman
WF-1 Details

- Pushbroom imaging spectrometer
- 8 meter spatial resolution
- 0.45 to 2.5 μm range, 11 nm resolution
- All-reflective optics
- One spectrometer, 2 dichroics after grating
- Offner spectrometer form, e-beam grating
- Si, InGaAs, and MCT area arrays
- 640 samples wide
- Currently under construction
OV-4/WF-1 References

• Very little published material exists for the Warfighter Sensor due to classification and commercial proprietary concerns

• Websites
 – http://www.vs.afrl.af.mil/vsd/
 – http://www.fas.org/spp/military/program/imint/warfighter.htm
EO-1/Hyperion

- NASA Code Y Sponsor
- Demonstration of:
 - Advanced Landsat imager technologies
 - Formation flying (Terra, Landsat 7, and EO-1)
- Hyperion a separate hyperspectral imaging sensor
- Other sensors on EO-1
 - Advanced Land Imager (ALI)
 - LEISA atmospheric corrector (LAC)
- TRW built and delivered Hyperion
- Launch is scheduled for April 2000
Hyperion Details

- Pushbroom imaging spectrometer
- 30 meter spatial resolution
- 0.45 to 2.5 µm range, 11 nm resolution
- All-reflective optics
- Two spectrometers, dichroics after entrance slit
- Offner spectrometer form, e-beam grating
- Si, MCT area arrays
- 256 samples wide
Hyperion References

- Website: eo1.gsfc.nasa.gov
HYDICE

- Naval Research Lab/CMO sponsor
- Hyperspectral Digital Image Collection Experiment
 - Hyperspectral MASINT Support to Military Operations
 - Measures and Signatures Intelligence (MASINT)
- Flies on ERIM International CV-580
- Sensor built by Hughes Danbury Optical Systems (HDOS)
 - Now Raytheon Danbury Optical Systems
HYDICE Details

- Pushbroom imaging spectrometer
- 0.5 mrad IFOV (1 to 5 meter spatial resolution)
- 0.40 to 2.5 μm range, 5 to 20 nm resolution
- Prism spectrometer
- Single InSb Area array 320 x 210 Format
 - Special passivation layer for visible response down to blue
- Selectable frame rate and integration time
- Sensor is cooled to 7°C to reduce thermal background
- Integrating sphere onboard calibrator
- Zeiss stabilization mount and DGPS
Hymap sensor
Hymap Details

Manufactured by Integrated Spectronics (Australia)
Whiskbroom scanner, 62 ° FOV
line array detectors
100 - 200 wavelength channels
bandwidths generally in 10 - 20 nm range
high signal to noise ratio, >500:1
2 - 10 metre spatial resolution
Operates in light aircraft with standard camera port
3 axis gyro-stabilised platform
<table>
<thead>
<tr>
<th>Sensor(s)</th>
<th>Platform</th>
<th>Hyperion</th>
<th>AVIRIS</th>
<th>Hymap, Probe</th>
<th>HYDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COIS</td>
<td>NEMO Satellite</td>
<td>EO-1</td>
<td>ER-2 Twin Otter</td>
<td>Various</td>
<td>CV-580</td>
</tr>
<tr>
<td></td>
<td>ONR, NRI</td>
<td>NASA/GSFC</td>
<td>NASA</td>
<td>HyVISTA, ESSI, DeBeers</td>
<td>NRL, ERIM</td>
</tr>
<tr>
<td></td>
<td>WRST</td>
<td>NMP</td>
<td>Code YS</td>
<td>Commercial</td>
<td>HYMSMO</td>
</tr>
<tr>
<td></td>
<td>SAIC, San Diego CA</td>
<td>TRW</td>
<td>JPL</td>
<td>Integrated Spectronics</td>
<td>HDOCS</td>
</tr>
<tr>
<td></td>
<td>605</td>
<td>705</td>
<td>20 km, 4 km</td>
<td>Various</td>
<td>2-10 km</td>
</tr>
<tr>
<td></td>
<td>Circular</td>
<td>Circular</td>
<td>Airborne</td>
<td>Airborne</td>
<td>Airborne</td>
</tr>
<tr>
<td></td>
<td>10:30 am Sun-Synch</td>
<td>10:00 am Sun-Synch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97.81° inclination</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 Day Repeat</td>
<td>3 day revisit (50° pointing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Channels</td>
<td>210</td>
<td>220</td>
<td>224</td>
<td>126</td>
<td>206</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>0.4 to 2.5 μm</td>
<td>0.4 to 2.5 μm</td>
<td>0.37 to 2.5 μm</td>
<td>0.45 to 2.48 μm</td>
<td>0.4 to 2.5 μm</td>
</tr>
<tr>
<td>Spectrometers</td>
<td>VNIR, SWIR</td>
<td>VNIR, SWIR</td>
<td>4 spectrometers</td>
<td>4 spectrometers</td>
<td>1 spectrometer</td>
</tr>
<tr>
<td></td>
<td>10 nm</td>
<td>11.4 nm</td>
<td>10 nm</td>
<td>13-17 nm</td>
<td>4-17 nm</td>
</tr>
<tr>
<td>Spectral Sampling</td>
<td>Grating</td>
<td>Grating</td>
<td>Grating</td>
<td>Grating</td>
<td>Grating</td>
</tr>
<tr>
<td>Dispersion Method</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>At FPA</td>
<td>At FPA</td>
<td>< 1 octave</td>
<td>< 1 octave</td>
<td>N/A</td>
</tr>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Pushbroom</td>
<td>Pushbroom</td>
<td>Whiskbroom</td>
<td>Whiskbroom</td>
<td>Pushbroom</td>
</tr>
<tr>
<td>FOV</td>
<td>0.87</td>
<td>0.62</td>
<td>30</td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td>Swath Width</td>
<td>30 km</td>
<td>7.5 km</td>
<td>11 km, 2.2 km</td>
<td>1.5 - 5 km</td>
<td>1.5 - 5 km</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>60 m, 30 m</td>
<td>8 m</td>
<td>20 m, 4 m</td>
<td>3 - 10 m</td>
<td>3 - 10 m</td>
</tr>
<tr>
<td>Ground Samples</td>
<td>1000</td>
<td>640</td>
<td>614</td>
<td>512</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>17 μradians</td>
<td>256</td>
<td>1 mrad</td>
<td>2.5 mrad</td>
<td>0.5 mrad</td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration Time</td>
<td>8.7, 17.4, 21.7 msec</td>
<td>4.4 msec</td>
<td>82 μsec</td>
<td></td>
<td>1-42 msec</td>
</tr>
<tr>
<td>Image Nodding</td>
<td>5:1, 4:1, 1:1</td>
<td></td>
<td>No</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Aperture</td>
<td>15 cm Diameter</td>
<td>12.5 cm Diameter</td>
<td>10 x 18 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/No</td>
<td>2.4</td>
<td>11.28</td>
<td>1</td>
<td>100 mm diameter</td>
<td>27 mm</td>
</tr>
<tr>
<td>Effective Focal Length</td>
<td>360 mm</td>
<td>1410</td>
<td>200 mm</td>
<td>400 (7) mm</td>
<td>81</td>
</tr>
<tr>
<td>FPA</td>
<td>18</td>
<td>15.36</td>
<td>14.72</td>
<td></td>
<td>12.8</td>
</tr>
<tr>
<td>VIS (silicon)</td>
<td>360x1000, 6x bin</td>
<td>Si/GeAs 80x640, 2x bin</td>
<td></td>
<td></td>
<td>InSb 210x320</td>
</tr>
<tr>
<td>SWIR (MCT, TCM8060)</td>
<td>900x1000, 6x bin</td>
<td>MCT 80x640</td>
<td>SI/InGaAs 64x1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 μm</td>
<td>60 μm</td>
<td>2, InSb 64x1, 64x1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Size</td>
<td>12 bit</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitization</td>
<td>Sunpower</td>
<td>TRW Pulse Tube</td>
<td>LN2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWIR Cryocooler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onboard Processing</td>
<td>ORASIS</td>
<td>1 m GSD pan</td>
<td>Advanced Land Imager</td>
<td>CMIGITS</td>
<td>Zeiss Stabilization</td>
</tr>
<tr>
<td></td>
<td>5m GSD PIC</td>
<td>4 m GSD msi</td>
<td>LEISA Atmospheric Corrector</td>
<td>CMIGITS</td>
<td>Zeiss Stabilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>760 Mbps</td>
<td>20 Mbps to tape</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 Gbits</td>
<td>10 Gbytes</td>
<td></td>
</tr>
<tr>
<td>Telemetry Data Rate</td>
<td>150 Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onboard Data Storage</td>
<td>56 Gbit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>