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Abstract 
I This  paper  introduces  a  new  class of simple  nonlin- 

ear  PID-type  controllers  comprised of a  sector-bounded 
nonlinear  gain  in  cascade  with  a  linear  jixed-gain P ,  
PD,  PI, or PID controller.  Two  simple  nonlinear  gains 
are proposed:  the  sigmoidal  function  and  the hyperbolic 
function.  The  systems  to be controlled are assumed  to 
be modeled or approximated by  second-order  transfer- 
functions,  which  can  represent  many  robotic  applica- 
tions.  The  stability of the closed-loop  systems  incor- 
porating  nonlinear P ,   PD,   PI ,  and PID  controllers are 
investigated  using  the  Popov  Stability  Criterion. A nu- 
merical  example is given  for  illustration. 

1 Introduction 
Undoubtedly, PID controllers are  the most  popular  and 
the most  commonly used industrial controllers in the 
past fifty years. The popularity  and widespread use of 
PID or three-term  controllers is attributed primarily to 
their  simplicity and performance  characteristics, where 
the I term  ensures  robust  steady-state  tracking of step 
commands while the P and D terms provide  stability 
and desirable transient behavior. PID controllers have 
been utilized for the control of diverse dynamical sys- 
tems  ranging  from  industrial processes to aircraft  and 
ship  dynamics.  In  fact,  industrial  robotic  manipulators 
invariably use PID controllers  in  their  independent  joint 
servo  control  systems. 

While  linear fixed-gain PID controllers are often ad- 
equate for controlling a nominal physical process, the 
requirements for high-performance  control  with changes 
in operating conditions or environmental  parameters 
are  often beyond the capabilities of simple PID con- 
trollers. For instance, when a  robotic  arm is contact- 
ing a reaction  surface wit,h a known stiffness coefficient, 
a linear fixed-gain PID  controller  can be designed to 
achieve a  desirable force response  with zero steady- 
state  error, low overshoot,  and rapid rise time. How- 

ever, the same  controller  typically  exhibits a sluggish 
response in  contact  with softer  surfaces, and becomes 
unstable when contacting  harder  surfaces.  In  other 
words, because the stiffness coefficients of different reac- 
tion  surfaces  can differ substantially, a fixed-gain PID 
controller  design  based on a nominal  surface stiffness 
leads to  a non-uniform  dynamic  performance and of- 
ten  instability. This problem  can be  alleviated, to a 
large extent, by employing  nonlinear  elements  in the 
PID  control scheme. These elements  can  compensate 
for stiffness variations and yield stable  and uniform re- 
sponses. Even when the reaction  surface stiffness is 
constant  and known, a nonlinear PID controller  can re- 
sult  in  superior  command  tracking  and  disturbance re- 
jection  performances  compared to  linear fixed-gain PID 
controllers. 

This  paper  presents a simple enhancement to  the 
conventional PID controller by incorporating a nonlin- 
ear  gain  in  cascade  with a linear fixed-gain PID con- 
troller. This  enhancement enables the controller to 
adapt its response  based  on the performance of the 
closed-loop control  system.  When the error between 
the  commanded  and  actual values of the controlled vari- 
able is large, the gain amplifies the  error  substantially 
to  generate a  large  corrective  action to drive the sys- 
tem  output  to  its goal rapidly. As the  error diminishes, 
the gain is automatically reduced to  prevent  large over- 
shoots in the response. Because of this  automatic gain 
adjustment,  the nonlinear PID controller enjoys the  ad- 
vantage of high initial  gain to  obtain a fast  response, 
followed  by a low gain to  prevent  large  overshoots. 

The  paper is structured as follows. The problem is 
stated in Section 2. Absolute  stability of the closeci- 
loop systems  incorporating  nonlinear PI PD, PI,  and 
PID  controllers are investigated in Sections 3-6. A nu- 
merical example is given in Section 7 for illustartion. 
Finally, conclusions drawn from this work are presented 
in Section 8. 
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2 Problem Statement 
In  many robotic  applications, the dynarnics of the sys- 
tern to be  controlled  can  be  adequately modeled by a 
second-order differential equation. Even when the sys- 
tem  dynamics is of higher order,  the response of the sys- 
tem is often largely dependent  on  the location of a pair 
of dominant  complex  poles, which can  be  embodied in a 
second-order model [ l ] .  Examples of such  robotic  sys- 
tems  are:  joint  servo  dynamics, arm Cartesian  dynam- 
ics, force control,  and compliance/impedance  control. 
In these  systems,  the second-order  transfer-function re- 
lating  the  system  output y ( t )  to  the control input u(t)  
is given by 
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where (, w,, and k denote, respectively, the damping 
ratio,  natural frequency, and open-loop  gain of the sys- 
tem, a = 2(wn, b = w i ,  and c = u:i. 

The new.class of controllers  presented in this  paper 
consists of a nonlinear  gain k in  cascade  with a linear 
constant-gain PID-type controller K ( s )  = kp+  $ + kds, 
where kp, k,,  and kd are the positive or zero  propor- 
tional,  integral,  and  derivative  gains, respectively. The 
nonlinear  gain k acts on the  error e ( t )  = yr ( t )  - y(t) 
between the  actual  output y(t)  and  the desired output 
y,.(t), and produces the “scaled” error f ( t )  = k ( e ) . e ( t ) ,  
where k ( e )  denotes a function of e .  The scaled  error 
f ( t )  is then  inputted  to  the  PID controller K ( s )  which 
generates the control  action u ( s )  = K ( s ) .  f ( s )  to drive 
the system, as shown in Figure 1. The gain k can  rep- 
resent  any  nonlinear  function which is bounded in the 
sector 0 < k < kmaZ.  There is a broad  range of options 
available for the nonlinear  gain k .  Here, we propose  two 

ear  gain k as a function of the error e is the  smooth 
sigmoidal function 

.d examples of such  functions. The first  proposed nonlin- 

2 
1 + exp( - kne) 

k = k, + kl 

where IC,, kl , and k? are user-defined positive constants. 
The gain k is lower-bounded by k,,, = k, - kl when 
e = -00, is upper-bounded by k,,, = k ,  + kl when 
e = +os, that is kmin < k < IC,,,, and  furthermore 
k = k, when e = 0. Thus k, defines the central  valve of 
k ,   k l  determines  the range of variation of k ( =  k,,, - 
k,,,,, = 2 k l )  with kl 5 k, to ensure k > 0, while k2 
specifies the rate of variation of k .  Figure  2a shows 
a typical  variation of k as a function of e when k,=2, 
k l  = I ,  and k2=0.5 ,  and shows that k has an “S-shaped” 
curve. 

{ 
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e z p (  kze)  + e z p (  - h e )  
k = k , + k l  1 -  

= k ,  + k l { l  - sech(kze)} 

where k,,  kl , and k2 are user-defined positive  constants. 
The gain k is now upper-bounded by k,,, = k, + kl 
when e = f m ,  and lower-bounded by kmin = IC, when 
e = 0. Thus k, defines the minimum  value, kl denotes 
the range of variation, and k2 specifies the rate of varia- 
tion of k .  Figure  2b shows a typical  variation of k versus 
e when k ,= l ,  kl = 1 ,  and k2=0.5. It is seen that k is an 
“inverted  bell-shaped”  curve, and is an even function 
of e ,  that is k ( - e )  = Ic(e). This class of nonlinear gains 
is applicable when k is required to  be a function of the 
error  magnitude [e l .  

The motivation for using the nonlinear  gain k is now 
discussed qualitatively.  When k is a constant,  the linear 
PID controller  gains  can be chosen such that for a step 
command  input,  the closed-loop system exhibits  either 
an oscillatory fast response  with  overshoot or a mono- 
tonic slow response  with no overshoot.  In  other words, 
the linear PID controller is incapable of accomplishing 
the two  contradictory  requirements of a fast response 
and  no overshoot  simultaneously. On  the other hand, 
when the gain k is a nonlinear  function of the error e ,  
such as the sigmoidal function defined earlier,  initially 
the  error e between the command yr  and  the  output y 
is large, hence the gain k will be  large,  producing a fast 
response. As time  proceeds and  the  error e is dimin- 
ished, the gain k will be reduced  automatically.  When 
the  output y overshoots the  command yrl the gain k is 
reduced even further,  thus  inhibiting  further overshoot. 
Therefore, the  automatic  adjustment of the gain k as a 
function of the  error e can  produce a fast  response with 
a small  overshoot, a behavior that is unattainable by a 
linear fixed-gain PID controller. This  argument  can be 
repeated when the  system is subjected  to disturbance 
inputs, whereby the nonlinear  gain  enables  the  system 
to  exhibit a  fast  non-oscillatory  response. 

Consider now the closed-loop control system shown 
in Figure I .  Because of the nonlinear nature of k ,  
t,he stability  analvsis of the closed-loop system is non- 
trivial. We shall now present the  stability analysis of 
t,hr closed-loop nonlinear  systems  with different types 
of PID coIltrollers. 



3 Stability Analysis of Nonlinear 
P Controllers 

in  this  case,  the closed-loop system employs the pro- 
port,ior:al (P)  controller 

K ( s )  = k ,  (2) 

in cascade  with  the nonlinear gain k ,  where k,  is the 
constant positive  proportional  gain. 

To  investigate  the  absolute  stability of the closed- 
loop system, we combine the linear  components (1) and 
(2) as 

W ( s )  = G(s)K(s)  = CkP 
s2 + a s  + b 

which is a  second-order  transfer-function, and  separate 
out  the nonlinear element which is the gain k .  We can 
now apply  the  Popov  Stability  Criterion [2,3] to  the 
system by examining  the  Popov  plot of W ( j w ) ,  which 
is the plot of R e W ( j w )  versus w Z m W ( j w ) ,  with the 
frequency w as a parameter  and R e  and Z m  refer to 
the real  and  imaginary  parts, respectively. This plot 
reveals the range of values that  the nonlinear  gain k 
can  assume while retaining closed-loop stability. The 
Popov  Criterion  states  that: 

“A suficient condition for the closed-loop system to 
be  absolutely  stable for all nonlinear  gains  in the sector 
0 < k < k,,, is that  the Popov  plot of W ( j w )  lies 
entirely to  the right of a  straight-line  passing  through 
the point -& + j0.” 

In  order to  apply the Popov  Criterion to  the system, 
we need to  compute  the crossir:g  of the Popov plot of 
W ( j w )  with the real  axis. In  this case,  from  equation 
(3), we obtain 

R e W ( j w )  = ckp(b - u2) 
d w 2  + ( b  - w2)2 

w Z m W ( j w )  = -ack,w2 
a2w2 + ( b  - u ~ ) ~  (5) 

Thus  the Popov  plot of W ( j w )  starts at the point 
P( %, 0) for w = 0 and  terminates at the point Q(O,0) 
for w = W. 

It is seen that wZmW-(jw) is always negative for all 
non-zero w, that is, the Popov  plot of W ( j w )  remains 
entirely in the  third  and  fourth  quadrants  and does not 
cross the real axis.  This implies that we can  construct, 
a  strilight-line  passing  through the origin such that  the 
Popov plot is entirely  to the right of this line. There- 
fore,  according to  the Popov  Criterion,  the  range of the 
allowable nonlinear  gain k is ( 0 , ~ ) .  

4 Stability Analysis of Nonlinear 
PD Controllesr 

In this  case, we employ the  proportional-derivative 
(PD) controller 

K ( s )  = k,  + kdS ( 6 )  

in cascade  with the nonlinear  gain k ,  where kp and kd 
are  the  constant positive  proportional  and  derivative 
gains, respectively. 

To  investigate the absolute  stability of the closed- 
loop system, we combine the linear  components (1) and 
(6) as 

W ( s )  = G(s)K(s)  = c(kp f kds) 
s2 + a s  + b (7) 

which is a second-order  transfer-function, and  separate 
out  the nonlinear  element which is the gain k .  To find 
out  the  range of values that  the nonlinear  gain k can 
assume while retaining closed-loop stability, we examine 
the Popov  plot of W ( j w ) .  In  this case, from equation 
(7), we obtain 

R e W ( j w )  = c[(akd - kp)w2 + bkp] a2w2 + ( b  - ~ 2 ) ~  (8) 

The  Popov  plot of W ( j w )  starts at the point P(*, 0 )  
for w = 0 and  terminates at the point Q(0, -Ckd) for 
w = co. Two cases are now possible depending  on  the 
relative values of kp and kd. 

4.1 Case One: blcd 5 akp 
In this case, from equation (9) it is seen that 
w Z m W ( j w )  is always negative for all non-zero w, that 
is, the Popov plot of W ( j w )  remains  entirely  in the 
third  and  fourth  quadrants  and does not cross the real 
axis. Therefore,  according  to  the  Popov  Criterion,  the 
range of the allowable nonlinear  gain k is ( 0 , ~ ) .  

4.2 Case Two: bkd > ak, 
In this  case, the Popov  plot of W ( j w )  crosses the real 
axis. The crossover frequency do is found by solving 
w I m W ( j w )  = 0 to yield 

I J , Z  = . b k d  - nlcp 

kd 

and  the value of kV( juo )  is then  found to be 



5.1 Case  One: ki 5 nk,, 

In this  case, w Z m W ( j w )  is olway.9 negative for all w ,  
that is, the Popov plot of W ( j w )  remains  entirely in 
the  third  and  fourth  quadrants  and  does not cross the 
real axis.  This implies that we can  construct  a  straight- 
line passing through the origin  such that  the Popov  plot 
is entirely to  the right of this line. Therefore,  accord- 
ing to  the Popov  Criterion,  the  range of the allowable 
nonlinear gain k is ( 0 , ~ ) .  

which is always positive. Since the Popov  plot of W ( j w )  
never crosses the negative real  axis, from the Popov 
Criterion  the  range of the allowable nonlinear  gain k is 

We conclude that in both cases, the closed-loop sys- 
tem is always stable under PD control with unbounded 
nonlinear  gain k .  

(0, W). 

5 Stability Analysis of Nonlinear 
PI Controllers 

In  this case, the closed-loop system  employs the 
proportional-integral  (PI) controller 

K ( s )  = k p  + - ki 
(10) 

S 

in cascade  with the nonlinear  gain k ,  where k p  and 
ki are  the  constant positive  proportional and integral 
gains, respectively. 

To investigate the absolute  stability of the closed- 
loop  system, we group  the  linear  components (1) and 
(10) as 

W ( s )  = G ( s ) K ( s )  = C( kps + k i )  
s(s2 + as + b) (11) 

which is  now a third-order  transfer-function, and sepa- 
rate  out  the nonlinear  element which is the gain k .  To 
apply  the Popov  Stability  Criterion  stated  in  Section 3, 
we examine the Popov  plot of W ( j w ) .  This  plot  reveals 
the range of values that  the nonlinear  gain k can  assume 
while retaining closed-loop stability. For this  purpose, 
we need to compute the crossing of the  Popov plot of 
W ( j w )  with the real axis. In  this case, from  equation 
(l l) ,  we obtain 

R e W ( j w )  = -C[kpw2 + (aki - bkp)] 
a2w2 + (b  - w2)2 

(12) 

w I m W ( j w )  = -C[(akp - k i ) J  + bki] 
u2w2 + ( b  - (13) 

The Popov plot of W ( j w )  starts  at  the point 

Q ( U ,  0) for w = W. Two  distinct cases are now possible 
depending on the relative values of IC, LtJld k,. 

p (  - c ( a k , - b k , )  
b2 , *) for w = 0 and ends at the point 

5.2 Case Two: ki > ak, 
In this case, the Popov  plot of W ( j w )  crosses the real 
axis. The crossover frequency w, is found by solving 
wImW(jw) = 0 to  yield 

The value of W ( j w )  at the crossover is then  obtained 
as 

ReW(jw, )  = (ak,  - k,)c 
ab 

Therefore, the maximum allowable gain  is 

We can now construct a straight-line  passing  through 
the point -k + j O  such that  the Popov  plot of W ( j w )  
is entirely to  the right of this line. Thus  the  range of 
the allowable nonlinear  gain k is (0, kma,). 

Observe that  the distinction  between the above  two 
cases is on the relative values of the proportional  and 
integral  gains k, and ki in the PI controller,  and  not  on 
their  absolute values. Notice that a reasonable  estimate 
of the  attenuation  factor a of the transfer-function (1) 
can readily be obtained  experimentally from the open- 
loop response of the  output y to  the  step control input 
u. Specifically, the  step response  has the settling  time 
of t ,  = $ = to reach  within the kl% tolerance 
band of the final value [l] . 

6 Stability Analysis of Nonlinear 
PID Controllers 

In this case, we employ the  proportional-integral- 
derivative (PID) controller 



i n  c:;wcatle with the nonlinear g;tiIl k ,  where IC,, ki ,  and 
IC,, are  the constant, positive proportional,  integral,  and 
dtxivative  gains, respectively. 

To investigate  the  absolute  stability of the closed- 
loop system, we combine the linear  components (1) and 
(17) as 

which is a  third-order  transfer-function, and  separate 
out  the nonlinear element which is the gain k .  In  order 
to assess the  stability of the closed-loop system, we ex- 
amine the Popov  plot of W ( j w ) .  This  plot reveals the 
range of values that  the nonlinear  gain k can assume 
while retaining closed-loop stability.  In  this  case, from 
equation (18), we obtain 

w Z m W ( j w )  = -C[kdW4 + (ak,  - bkd - ki)w2 + bki] 
u2w2 + ( b  - w2)2 

(20) 
The Popov  plot of W ( j w )  starts at the point 

Q(0,  -Ckd) for w = 00. To apply  the  Popov  Criterion, 
we need to  compute  the crossing of the  Popov plot of 
W ( j u )  with the real  axis.  From  equation (20), it is 
clear that when (ak,  - bkd - k i )  2 0 or 

p (  - c ( a k , - b k , )  & .  
bZ , y) for w = 0 and  ends at the point 

(bkd + k i )  5 akp  (21) 
then w Z m W ( j w )  is negative for  all w,  thus  the Popov 
plot  does  not cross the real axis.  In this case, the range 
of the nonlinear  gain k for stability is ( 0 , ~ ) .  Hence 
equation (21) gives a suficient, but  not a necessary, 
condition for closed-loop stability for all values of k .  

When (bkd + k i )  > uk,, the closed-loop system  may 
become unstable for some values of k .  These values of 
k correspond to  the cases where the Popov  plot crosses 
the real  axis, that is, wIrnCV(jw) = 0. In the Appendix, 
the conditions  under which this  equation  has real pos- 
itive  roots are found.  Two  distinct cases are possible 
depending  on  the relative values of k,, k i ,  and kd. 

6.1 Case One: 6 > I &  - & I  
In  this  case,  equation (20) cannot have positive  real 
roots for w. Hence the Popov plot of W ( j w )  does  not 
cross the real  axis and  stays entirely in the  third  and 
fourth  quadrants. Therefore,  according to  the Popov 
Criterion,  the  range of the allowable nonlinear  gain IC is 
(0, m). 

6.2 Case Two: J.k; 5 I&& - &I 
In this casc, t h o  Popov plot of W ( j w )  crosses the real 
axis.  Equation (20) now has two real  positive  roots w1 
and w2, which are  the two crossover frequencies. These 
frequencies are  the  roots of the following equation: 

k,lw4 + (ak ,  - bkd - IC;)w2 + bk, = 0 (22) 

The value of W ( j w )  at the crossover is then found 
from equation (19) as R e W ( j w i )  for i=l, 2. When 
R e W ( j w i )  is positive or zero, the  range of the allow- 
able  nonlinear  gain k is (0,m). When R e W ( j w i )  < 
0. the range of k is (0, k,,,), where k,,, - - 
mzn["-=f? ReW j w ,  1 +] ReW j w  * 

Observe that  the effect of the derivative  gain kd is to 
increase the range of the integral  gain k ,  for stability. 
Notice that when kd = 0, the results of Section 5 for P I  
controllers are  obtained. 

7 Illustrative Example 
For the sake of illustration,  computer  simulations of the 
Popov  plot for a  position-controlled arm  with a nonlin- 
ear PI force controller are presented.  Given 

the  Popov plots of W ( s )  = G(s)K(s)  for the two values 
of k p  = 2 and k,  = 0 are shown in  Figures 3a-3b.  For 
k,  = 2, it is seen from Figure 3a that  the Popov  plot of 
W ( j w )  does not cross the real  axis as expected; hence 
the allowable range of the nonlinear  gain k is ( 0 , ~ ) .  In 
contrast, when k,  is reduced to zero,  Figure  3b reveals 
that  the Popov  plot of W ( j w )  crosses the real  axis at 
-0.2, hence the allowable range of k is now reduced to 

We conclude that reducing k,  has  a  destabilizing ef- 
fect and decreases the  range of the allowable nonlinear 
gain k to maintain closed-loop stability. 

(075). 

8 Conclusions 
It is widely believed that a "perfect" control  system 
must  exhibit  a fast response with no  overshoot.  These 
two requirements are  contradictory when linear con- 
trollers are used,  and are often impossible to achieve 
when the system operating conditions  undergo gross 
variations. A fast  response  requires a large  gain which, 
in turn, gives rise to  a  large  overshoot,  manifesting  the 
contradiction of the two requirements. This  paper pro- 
poses a simple solut,ion t,o this  fundamental problem by 



. .  

cmharlcing a fixetl-gain PID  controller with a rlonlinear 
gain k .  The nonlinear  characteristics of t h e  gain  enables 
the  achitwment, of fast  initial response when IC is large, 
followed by a small  overshoot when k is small.  Thus  the 
nonlinear PID controller  does  not suffer from the dis- 
advantage of large  overshoots which often accompany a 
fast response. This  automatic  adjustment of the gain 
is the main  advantage of the nonlinear PID controller 
over the conventional linear PID controller. 

Current research is aimed at the  implementation  and 
practical  validation of the proposed  nonlinear PID con- 
trol schemes in robotic  compliance and force control 
applications. 
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10 Appendix 
Consider the  quadratic  equation 

A X ~ + B X + C = O  (23) 

where the coefficients A ,   B ,  and C are  constants,  and 
A and C are known to  be positive. We wish to find 
the conditions  on A ,   B ,  and C under which equation 
(23) will have two  real  positive  roots. Clearly, if the 
coefficient B is zero or positive, for any  positive  number 
X,  the expression ( A X 2  + B X  + C )  is positive. Hence, 
a necessary, but  not a sufficient, condition for having 
a  positive  root is B < 0. Now, since the  product of 
roots of equation (23) is positive,  equation (23) can  only 
have either  two  real  positive or two  real  negative  roots. 
Let A = B2 - 4AC be the discriminant.  Then  the 
conditions for existence of two  real positive roots  are: 

A Z O  ; B<O (24) 

The first  condition yields 

Since ( B  - 2 m )  is negative in view of equation (24), 
the required  condition becomes 

B I - 2 m  (26) 

Therefore, when B > - 2 m ,  equation (23) will not 
have two real  roots. 

To apply  this  result  to  the  nonlinear  PID  controller 
in Section 6, we substitute: A = k(1, B = ak, - bkd - 
k,,  C = hk,. This yields 

(uk, - hk,i - k i )  5 -2- 

Hence, the required  condition for the Popov plot to 
cross the real  axis is found to be 

ak, I (6 - &J2 

This  equation yields the condition for real  axis crossing 
as 

-5 1 6 -  AI (27) 

Therefore, when 6 > I & - & I ,  the Popov  plot 
does not cross the real  axis. 
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