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ABSTRACT 
L'ilis work reports  on  the  computation of the average phase of a beam over an  optical element  via  discrete 

Fourier  transform  techniques. The objective is to develop accurate  diffraction models for the Space  In- 
terferometry Mission (SIM). Applications  related to SIM include  calibration of metrology  measurements, 
evaluation of cornercube  diffraction effects, and  others.  The algorithms that  are used to compute  the field 
are  described and numerical  tests that assess their  accuracy  are  presented. 
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1. INTRODUCTION 
With  the  operating  parameters of SIM, however, deviation from geometrical  optics  is  significant. It is 
expected that a  lot of components will operate  in  the near-field regime. Ray-tracing is not adequate 
anymore  and,  therefore,  the development of near-field  diffraction models becomes necessary. Additionally, 
the goal of high  precision  astrometry  requires  extremely  high level of accuracy of the  optical  models  at  a 
wide range of Fresnel  numbers. 
The present work reports  on  the  accuracy of near-field diffraction  algorithms that are  based on discrete 
Fourier transform techniques. This work is part of the  modeling efforts for the  Space  Interferometry 
Mission (SIM),  a  part of NASA's Origins  program. Specific applications that require near-field diffraction 
modeling  are  calibration of measurements of the  internal  metrology  system,  evaluation of diffraction  effects 
in  cornercubes,  starlight  system  modeling, etc. The accuracy  requirements are  particularly high and  must 
. : . \  satisfied over a wide range of propagation distances. The error in the  computation of the average  phase, 
as a fraction of the wavelength,  cannot exceed 20 picometers. 

The  quantity of interest is the average phase of the field over an  optical element,  usualIy  a  detector. In 
the sequel,  calculations for the average phase  are  presented  with  algorithms that employ  discrete  Fourier 
transform techniques for the reconstruction of the  optical field. Such algorithms  are very popular because 
they combine accuracy,  robustness, and speed. They  are also easy to implement. The numerical  tests 
are  performed  on  the simplest possible geometry so that comparisons  with closed-form solutions for the 
field can  be  made. It  turns  out  that  the desired level of accuracy can  be achieved with  proper choice of 
algorithm, over the  entire range of the  parameter of interest. 

2. REPRESENTATIONS OF THE OPTICAL  FIELD 
It is assumed that  an  aperture is located at  the  plane z = 0, emitting  plane waves of wavelength X. The 
optical field, U ,  is assumed  to  be governed  by the  paraxial  equation, 



-W 

where . F ( f Z ,  f y ,  0) is the Fourier transform of the field at  the  boundary z = 0. In  the  literature  it is referred 
to as the  angular  spectrum of the field. 

Another  approach  to solve this  equation is via Green’s function  method. It is also called the  “point source” 
method.  The result is, [l], 

The two equations  are  equivalent, i e . ,  they  result in  identical fields. 

3. CALCULATION OF THE AVERAGE PHASE 
The  quantity of interest is defined as the  phase of the  integral of the field  over A, 

I E / U ( x , y ,  z )  d x d y .  
A 

The calculation of the average phase  requires computation of the field and, subsequently,  integration of 
the  computed field. 

The evaluation of the diffraction  integral (2) can  be performed  with  direct  application of FFT. This 
approach  results  in a powerful and robust solver. The  computational cost of the  method is proportional 
to  the cost of  two 2-D FFT’s.  Semi-analytical  guard-band  requirements for the elimination of aliasing and 
energy spill-over into  the  computation  domain have been  introduced by Sziclas & Siegman, [2], Mansuripur, 
[3], and  others. 

In principle, FFT may also be employed for equation (3). This  approach is even faster  because  it re- 
quires only one 2-D Fourier transform. However, the scaling factor 1/Xz that  appears  in  the Fourier kernel 
introduces two significant computational  problems.  The first one is that  the scaling  factor  does  not al- 
low evaluation of the field at  the same ( x ,  y )  pairs  that  the field is known at  the  aperture. Numerical 
interpolation  is,  therefore, necessary if one is seeking the values at  the same ( x ,  y) pairs. 

The second problem is associated  with the resolution at  the detector plane. Assume that  the grid  at  the 
aperture consists of N x N points. Let A< be  the  sampling  interval  at  the  aperture  and Ax the sampling 
interval at  the detector  plane. The relationship between the two intervals is Ax = X z / ( N A t ) .  In other 

:!ds. Ax is inversely proportional  to At. The two sampling  intervals can be simultaneously  reduced only 
if N is increased. It  turns  out  that  to achieve the desired degree of accuracy, N has to be  ampler  than 
current  computational resources can handle. 



A more efficient approach for the numerical integration of (3) is to employ recurrence  formulae that hold 
for  trigonometric  functions.  The first step is to discretize the integral and  approximat,e  it as a Fourier 
series. The  summation Of the series can be achieved via the Goertzel-Reins& algorithm,  Stow & Bulirsch, 
[dl. This  algorithm performs  evaluation of trigonometric series of the  type f m e j m B .  It is based on the 
fact that for the  sums defined by 

1 N-1 

c, = - 
sin 6 m=j  C f r n s i n ( m - p + l ) e ,  p = 0 , 1 ,  . . . ,  N - I .  

the following recurrence  relation  holds, 
I 

This  relation  has  to  be employed in descending order  with  initial values CN = 0 ,  C N + ~  = 0 .  The series 
of interest  are  then given  by 

T n  the sequel, this  method for computing (3) will be referred to as the direct method. 

The critical  parameter of the problem is the Fresnel number, defined as 
n 

W L  

x z  Fr  = - ,  

where w is the  characteristic semi-length of the  aperture.  It is easy to verify that  the integrand  in (2) 
becomes more  oscillatory  as the Fresnel number decreases, while the opposite it  true for the  integrand in 
(3). Hence it  is  expected that  with fixed resolution, the  angular  spectrum  method will be more  accurate 
for high Fresnel numbers, while the direct  method will be more  accurate for small Fresnel numbers. 

Once the field has been computed,  the average phase  can  be  obtained by numerical  integration of the 
field  over the  detector A. This  integration can be performed by standard two-dimensional quadrature 
algorithms,  such  as  Simpson'e  rule.  Other choice are, of course available. Probably  the most  accurate 
method is Gaussian  quadrature  but  it requires knowledge of the field in  non-uniform  sampling.  Therefore, 
it  cannot  be employed on fields computed by FFT-based  algorithms.  The  results  presented below have 
been  obtained by Simpson's  rule. 

4. NUMERICAL TESTS 
The accuracy of the algorithms  described above was explored thoprugh a series of numerical  tests.  Results 
for some of these  tests  are  presented  in  this  section.  The  tests consisted of beam  propagation  from a 
square  aperture  to a square  detector. For this  particular problem the field is known analytically, [l]. A 
very accurate  estimation for the average phase  can  be  obtained by Gaussian quadrature of the  analytic 
solution of the field. Numerical convergence tests showed that accuracy  up to  the 7th significant digit can 
be achieved on a grid that consists of 512 points  on each direction.  Results obtained in  this fashion are 
used for testing  the accuracy of the two algorithms  described above. The  error in the calculation of the 
average phase is measured as a portion of the wavelength. For example, an  error equal to 7r is said to be 
en  error of half a wavelength. The error is measured  in picometers. The grid size for the  angular  spectrum 
method was  2048 x 2048 points  with  the  guard-band  ratio  equal to 4 at  the  aperture.  The grid size for the 
direct  method was 512 X 512 points at  both  aperure  and  detector. 
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Figure 1. Average phase  error of the  angular  spectrum  method. 
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Figure 2. Average phase  error of the direct  method. 

For the first test  the  width of the  aperture was 2w = 3 cm, while the  width of the detector was 2W = 6 cm. 
The wavelength was X = 0.7pm.  Results  on  the  errors of the two methods as a function of the Fresnel 
rlumber are shown in figures 1 and 2. The error of the  angular  spectrum  method was smaller than  the error 
tolerance of  20 picometers for Fr = 4 and higher. In contrast  the direct method gave acceptable  results 
for Fr  = 20 and lower. Therefore, there is an overlapping region where both  algorithms yield satisfactory 
results. Further, for Fresnel numbers  larger than  approximately 19, the  angular  spectrum  method is more 
accurate than  the direct  method. 

On a different test,  the  aperture  width was set  at 2w = 5mm  and  the detector  width at 2W = 10mm.  The 
wavelength was X = 1.3prn. The  propagation  distance varied between z = 10m  and  12m.  The Fresnel 
number at z = lOm is about Fr = 0.48. The errors of the two methods  as a function of the  propagation 
distance  are  plotted  in figure 3 and 4. 

Results  obtained  with  four  different  resolutions  with  the  angular  spectrum  method,  are shown in figure 
3. The grid sizes were  2048,  4096, 8192, and 32768 points per  direction, respectively. These  results were 
obtained  at  Caltech's  HP/Exemplar  SPP200, a 256-processor machine with 64 Gigabytes of memory. The 
code was parallelized so that  the  data size could be  distributed over  128 processors. The guard-band  ratio 



Figure 3. Average phase  error of the  angular  spectrum  method. 
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Figure 4. Average phase  error of the direct method. 

was set at 16, in order to minimize aliasing. The performance of the  method  in  this  test case, however, is 
not satisfactory. The errors  are  too high for the purposes of SIM, even at  the finest resolution.  On the  other 
hand,  the  results  obtained by the firect method for this  test case are extremely  accurate, figure 4. The 
error  has  been  kept below 1 picometer. In particular,  the  error peak was 0.49 picometers at x = 11.35m. 

5. CONCLUSIONS 
The present study was focused in the accuracy of Fourier-based  algorithms for the evaluation of the average 
phase of a beam in the near field. The error  tolerance  in the  computations is 20 picometers. Numerical 
tests showed that  the angular  spectrum  approach  with FFT is a reliable method for high Fresnel numbers, 
generally  higher than 15. The method  based on direct  integration of the diffraction  integral (3) via the 
Goertzel-Reinsch  algorithm yields satisfactory  results for Fresnel numbers  smaller than 20. The error in 
the  computation of the average phase  can always be kept below the tolerance level with  proper choice of 
one of these two algorithms. 
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