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1. INTRODUCTION 

Space-borne  optical  interferometry  holds  the  promise 
of revolutionizing  our  understanding of the ori- 
gin and  evolution of the  planetary  systems. By 
synthesizing  the  image of a star or possibly its 
orbiting  planets  through  interfering  light  gathered 
by two or more  collectors,  a  unique  window  into 
characterizing  size,  temperature,  and  orbital  pa- 
rameters is provided  (Davis, 1985). 

Imaging using optical  interferometers is through 
a  process called uv-plane coverage (see $2.1). The 
paper  establishes  a  connection between optimal 
control  strategies for the  uv-plane coverage  on  one 
hand,  and  the mission fuel and  time  allocation 
and  the  underlying  combinatorial  optimization 
problem  on the  other.  To  make  the  presentation 
specific, we focus on a  particular  planned NASA 
optical  interferometry mission called the  Space 
Technology  3 (ST3). By doing so we find an 
opportunity  to  describe in some  detail  the  extra 
transformation needed to  translate  uv-plane cov- 
erage to  the  actual  spacecraft  movements in the 
physical  space.  In  the ST3 case, these  movements 
constitute  a  paraboloid. 

The  research of the  author was carried  out at  the  Jet 
Propulsion  Laboratory,  California Institute of Technology, 
under  a  contract  with  the  National  Aeronautic  and  Space 
Administration. 

The  paper  addresses  the following questions for 
ST3: 

(1) Given  a time  and fuel allocation, how many 
stars can  be  imaged (assuming  that  the cov- 
erage  proceeds from  one  star  to  the  next,  and 
that  the specified uv points for a given star 
have  already  been  sequenced)? 

(2) Given N stars  and  a  particular  set of  uv 
points for each,  what is the  optimal fuel 
strategy for covering them (given  a certain 
allowable  mission life time)? 

The first question is addressed  by  optimal con- 
trol laws  which  are parameterized in terms of the 
mission life time  and  fuel  allocation.  The second 
question  leads  us  directly to a  combinatorial  op- 
timization  problem. 

A few words on  the  notation.  The  mass of the 
spacecraft  is  denoted  by A4 (kilograms),  its avail- 
able fuel by F (kilograms),  and  the  Isp of its 
thrusters by I (sec). The  thrusters  are  assumed 
to have  a maximum  thrust level of T (Newton); a 
denotes  a  vector of length a- when a is  represented 
in the  frame F ,  we write (a)F. g denotes  the 
earth's  gravitation  constant. 

We assume that  the spacecraft is in  free  space, 
its  mass is fixed during  the  particular  interval of 
interest (however it  can  be  regularly  updated), 
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Fig.  1.  Imaging a star  through  optical interferom- 
etry 

and  that  the  disturbance forces  are  negligible. We 
also  assume that each spacecraft is equipped  with 
on/off thrusters. 

2. PRELIMINARIES 

2.1 What is t he  uv-plane coverage? 

Imaging a star can  be  thought as the  evaluation 
of its  intensity  function in the  frame  attached  to 
the  star.  The van  Cittert-Zernike  formula 

u v  

relates the  evaluation of I to  the inverse Fourier 
transform of a function which can be  measured by 
optical  instruments.  This  function, represented by 
p ,  is  called the  mutual coherence function  (Born 
and Wolf,  1997). Here one  has, 

where X is the wavelength of the light  emitted by 
the star- ( 2 1 ,  yl ) ,  ( 2 2 ,  y2) are  the  positions of the 
aperture  in  the physical  space. See Figure 1. 

Imaging a star  thus  amounts  to  the evaluation 
of the  mutual coherence function over a disk of 
infinite  radius in the uv-plane. By choosing a 
disk of finite  radius  and  sampling  (evaluating  the 
mutual coherence function)  at a finite number of 
uv-points, I is approximated by keeping a range 
of its frequency content. 

Suppose that we place  each of the  aperture on 
a separate  spacecraft.  The process of moving the 
two  spacecraft  (aperture)  in a formation  (Mesbahi 
and  Hadaegh,  1999),  (Wang  and  Hadaegh,  1996), 
in  order to  sample a specified points in the uw- 
plane  is  called the uw-plane coverage. 

Selecting the uv-points  based  on  some  apriori as- 
sumptions  about  the  source  (star) is an  interesting 
problem by its own right. For the purpose of 
the present  discussion, we assume that for each 
star,  the uw-points that  need to  be sampled have 

Fig. 2. ST3 in  a  helio-centric orbit 

already been specified: for N stars,  this  amounts 
to a list of the  form, 

2.2 The Geometry of the ST3 Mission 

The geometry of every optical  interferometry mis- 
sion is dictated  mainly by the  path lengths that 
the  starlight  travels to  where the  image is  finally 
synthesized. We briefly discuss the configuration 
of ST3  and  and  the  rationale for it proposed 
parabolic  geometry. 

Recall that a parabola is a set of points  that  are 
equally distant ( p )  from a fixed point (focus) and 
a fixed line  (directrix). The axis of the  parabola is 
perpendicular to  the directrix  and passes through 
the focus. The point  on  the  parabola  axis, half way 
between the focus and  and  the  directrix is called 
the vertex. If the z-axis  is the axis of the  parabola 
and  the  x-axis is  perpendicular to  i t ,  intersecting 
at  the vertex,  then the  equation of the  parabola 
is z = A x 2  = L x 2 .   T h e  paraboloid of rotation 
is forme8 by rotating  the  parabola  about  its  axis 
i.e., z = &(x2 + y2). The  orbit chosen for the 
ST3 mission  is earth-trailing  (Figure 2). One of 
the spacecraft,  the  combiner,  carries  the  instru- 
ments necessary for collecting and  combining  light 
beams. The other  spacecraft,  the collector, car- 
ries the  instruments for  collecting  light  only. The 
light  gathered at  the collector  is  redirected to  the 
combiner and interfered  with the light  gathered 
at the combiner.  Interferometry  requires that  the 
distance that  the two  light  beams  travel  are  equal. 
We call this  requirement  the zero-delay condition. 
By placing the combiner at the focus of paraboloid 
and moving the collector on  its  perimeter,  it  can 
be shown that  the zero-delay condition  is met by 
providing an  internal delay of length 2 f  in  the 
combiner  (Figure 3). 

2 4f 
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Fig.  3.  Why a paraboloid for ST3? 

Fig. 4. Projections  from  the  ST3  paraboloid  to  the 
uv-plane 

2.3  Mapping the uv-plane t o  the ST3 Paraboloid 

We are given a set of uv points which need to 
be sampled for a given star. Since the  spacecraft 
are  required  to move on a paraboloid, we would 
like to derive an explicit  expression which relates 
the movements  between the uu points to the cor- 
responding  spacecraft  movements  in  the  physical 
space. 

Let 3 I  denote  the  inertial reference frame. Let 
3 O  denote  the reference frame  attached  to  the 
ST3  paraboloid,  with  its z-axis  parallel to  the 
axis of observation. The zy-plane of F0 shall  be 
denoted by 3g. Let M y  denote  the direction 
cosine matrix  that associates  vectors  represented 
in 3 I  to  those  that  are represented  in 3'; simi- 
larly (My) , ,  denotes the direction cosine matrix 
associated  with  the respective  xy-planes. 

Denote by f and c ,  the locations of the combiner 
and  the collector  in the  inertial  frame. Define, 

r := c - f .  

Let us denote  the  projection of r onto  the  cy-plane 
of 3' by E. 

Then using (2.1) one  has, 

Motivated by the required  geometry of the  ST3 
and  the  associated  uv-plane, we proceed to  let, 

refer to  Figure 4. Then, 

The relative  position of the collector with respect 
to  the combiner  is  therefore, 

(r)Fr = ( ~ y ) ~ ( c  - f ) p  

In  order to  simplify the presentation we assume 
that M y  is  identity  and that X = 1. Thus  the 
vector r is  simply, 

Specifying a set of (u, v)  points  for  imaging a given 
star therefore  directly translates  to a sequence of 
r's in the Euclidean  space. In  other  words, uv- 
plane coverage for N stars is simply a collection, 

rl , . . . , rn,  , . . . rl, . . . , rn2, . . .r1, . . . , rn,, "- 
star 1 star 2 star N 

where nj is the number of uu points scheduled to  
be  sampled for star j .  

3. HOW MANY SOURCES CAN ST3 
OBSERVE? 

In  this section we address  the following prob- 
lem:  Given a time  and fuel allocation, how many 
sources  can ST3 observe, when one or two  space- 
craft moves are allowed? To  address  this  question, 
we make two  simplifying  assumptions, which in a 
sense, remove the  underlying  combinatorial char- 
acter of the uv-plane coverage. We shall  come  back 
to  the combinatorial  nature of the problem  in  the 
next  section.  These  assumptions  are as follows: 

(1) The uv-plane coverage for N stars proceeds 

(2) For each star,  the scheduled (u,v)  points 
from  one star  to  the  next. 

have already been sequenced. 

Under  these  two assumptions, we derive  explicit 
formula for the  number of sources which can  be 
observed by ST3. Moreover, we specify the corre- 
sponding  optimal  control laws  for  each  spacecraft 
movement  and  the  underlying  control  architec- 
ture. 



.+- time 

Fig. 5. The acceleration profile 

3.1 A n  optimal control  strategy fo r  moving one 
spacecraft 

Let the fuel depletion  rate for each spacecraft at  
time t be  represented by, 

-={ d F ( t )  -yT when F ( t )  > 0 and u ( t )  # 0 
dt 0 otherwise, 

where y = L ,  T is the  maximum available thrust, 
I is the  thrusters'  Isp,  and u is the control force 
applied  on the  spacecraft. 

We assume that  the spacecraft  has  already been 
turned  such that  the  thrust direction is parallel 
to  the desired  move, d. We also consider the case 
where  full thrust T is  applied on  the  spacecraft 
during  the  interval [ t o , f l ,  coast  during [i, t f  - q ,  
and  then  decelerate  during [ti - i, t f ] ,  where to 
and t f  are  the  initiation  and  termination  time of 
the movement  (refer to  Figure 5). This control 
law has  the  form of a bang-coast-bang  control,  a 
class which is  known to contain  an  optimal fuel 
maneuver  (Stengel, 1994). 

Integrating  the  spacecraft  equation of motion 
twice and  plugging in the  boundary  conditions we 
obtain, 

I g  

where M denotes the  mass of the  spacecraft 
(either  the collector or the combiner),  and d is the 
distance  that  the spacecraft  has moved during  the 
interval [ to  , t f  1. 
The fuel  usage for a movement of length d is 
therefore, 

F ( d )  = 2yT i (d )  

and  thus, 

F ( d )  2 y M d  
t j ( d )  = -+ - (3.3) 2yT F ( d )  ' 

For a movement of length d ,  consider the following 
minimization  problem, 

J ( F ( d ) , t f ( d ) )  = F ( d )  + X t f ( d )  "-+ min, 

an  optimal  control  problem, where the parame- 
ter X provides  means of specifying the relative 

importance of fuel or time (we  say  more  about. 
the selection of X shortly).  The  optimal control 
problem  is  generically concerned about choosing 
a control law which is optimal for a given objec- 
tive  functional. Since the  form of the control law 
(bang-coast-bang)  has been specified, the  opti- 
mization  parameters  are  the coast  interval  and  the 
maneuver  completion  time,  determined by i ( d )  
and t f ( d ) .  

Taking the first  derivative of (3.4) with  respect 
to F ( d )  after  replacing t f ( d )  with  its  equivalent 

and 

where, 

= 2 y r n D (  X )  , 

expression (3.3), we obtain, 

see Figure 6.  

Recall that  the uv-plane coverage translates di- 
rectly to  traversing a sequence of vectors  in the 
Euclidean  space.  Suppose that  the ( u ,  v )  points 
for a given star have  already  been  sequenced- that 
is, we are given the sequence rl ,  1-2,.  . . ,rn,  which 
corresponds to  the desired  uv-plane  coverage. 

L e t d i j = l l r i - r j l l ( i = l  , . . . ,  n - l , j = i + l ) .  
Define, 

which is the average square  root  distance  traveled 
by the  formation  per  source. 

Using (3.5)-(3.7) the  total fuel and  time  required 
for the uv-plane coverage of N stars using a 
spacecraft of mass A4 is, 

and 

Given that  the  maximum available thrust T ,  the 
Isp I ,  and  the  mass of the spacecraft M are 
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Fig. 6. P(X) 
fixed, X is the only parameter which can chosen 
to satisfy a given mission  requirement. The choice 
of X effects: 

0 the acceleration/deceleration time,  determined 

0 the  fuel  consumption for a given desired 
repositioning of the spacecraft,  and 

0 the  time required to complete  the maneuver 
for a given  repositioning of the  spacecraft. 

by W ) ,  

How X effects these  parameters is through  the 
multiplier P(X). We note  that when X >> 2 y T ,  
P(X) x 1. 

Given ftotal  and  ttotal,  the  number of sources 
which can  be observed by ST3 is  therefore, 

If one  would like the mission to run  out of fuel 
and  time at about  the  same  time,  let, 

or, after  some  simplification, 

this expression  can be solved for X ;  denote  the 
solution by x.  
More generally, given a fuel and  time  allocation, 
we can determine  the  number of sources which can 
be observed as follows: 

(collector or 
combiner) 

Fig.  7. uw-plane coverage with  one  spacecraft 

The corresponding  control law for a move of 
length d can also be  determined  as follows: 

Find  t;(d) using (3.7),  i.e., 

The acceleration time  parameter is then 
found  using (3.9), 

t(d) = - t j (d)  - /(t;:))’ - - - M d  
2 T ’  

The  parameter i determines the form of the con- 
trol law used for repositioning of the  spacecraft 
for a move of length d .  For example, given a 
predetermined  set of moves,  one would proceed 
to calculate  the corresponding t‘s and  have  them 
organized  in  a  lookup table as part of the control 
algorithm (see Figure 7). 

3.2 An optimal  control  strategy fo r  moving both 
spacecraft 

In this section we consider the case  where both 
the combiner and  the collector are allowed to  
move for the uw-plane coverage. This case  is 
particularly  relevant,  when  due to  some  other 
mission considerations, it is  desired that  the  area 
to  mass  ratio of both spacecraft  remain close 
during  the mission life time. 

Let us denote the  mass of collector and  the com- 
biner by M1 and M z ,  respectively; we let M I  = 
M ,  and M2 = OM, where 0 > 1. 

Suppose that in order to  move between  two uv 
points, the formation  is  reqtlired to  travel a dis- 
tance d .  This  means that  the  total movement of 
the collector and the combiner add up to  d .  Let 
the collector move 6d and  the  combiner move ( 1  - 
6 ) d ,  where, 0 5 6 5 1. According to  (3.5)-(3.7) 
the corresDondine fuel  usage for the collector and 
the combiner woild  then b’, 2 7 1 / m p ( A ~ )  and 
2 7 d m p ( A , ) ,  respectively,  where A1 and 
X2 are  the  optimization  parameters  in  the  optimal 
control  laws for the collector and  the combiner. 



The  total fuel usage for the uo-plane coverage of 
A' sources when moving both  spacecraft is thus, 

The  total mission time would then  be, 

If one  requires that  the collector and  the combiner 
use the  same  amount of fuel during  their respec- 
tive moves and finish their  maneuvers  at  the  same 
time, we should  let X1 = X2 and 6 = 1 s e .  

Comparing  the  total fuel usage for the single 
spacecraft  moves  and  the two spacecraft moves, 
we note that in the first case the fuel usage is 
determined by @(X)  and in the second by, 

(J;B + J"P( X ) .  

Of course the X's in the two cases (moving the col- 
lector  only and  moving  both  the combiner and  the 
collector) do  not have to be equal. If the two X's 
are chosen to  be equal, since (&+ Jm 2 1 
when Q 2 1, moving  both  spacecraft always  results 
in  higher  fuel  usage (the mission life time  short- 
ens). However, it is best to  choose x < x as we 
proceed to show (x  was defined in the previous 
section). 

Setting Q(l - 6) = 6 ,  the  time required  for the 
uv-plane  coverage when moving both  spacecraft 
is, 

The corresponding  fuel  usage is then  ftotal = 
4 D N y m P ( X ) .  Similar to  the single space- 
craft  case, if  we require that  the mission  runs out 
of fuel and  time  at  the  same  time, we end  up 
solving  for X in, 

- 

Denote the  solution by k ,  i.e., x = e. 
Note that 5 < x and  that  the  ratio between the 
fuel  usage  for  one  spacecraft moves and  the two 
spacecraft  moves  is, 

Fig. 8. uv-plane coverage with  two  spacecraft 
moves 

N = L  ftotal 

The control  architecture  for the uv-plane coverage 
by moving both  the collector and  the  combiner is 
shown in  Figure 8. 

4.  CONCLUDING  REMARKS 

This  paper considered the  optimal uv-plane cov- 
erage for an  optical  interferometry mission.  In 
this  direction, we delineated on the  relationship 
between the  optimal  control laws which are used 
during  the uv-plane  coverage, the allocated  mis- 
sion and fuel budget,  and  the  number of stars 
which can  be  imaged. The results were presented 
in the  context of the  ST3 mission. 
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Thus  the  number of sources which the  ST3 can 
observe with  two  spacecraft  moves  is, 


