Using SPIN Model Checking for Flight Software
Verification'

Peter R. Gliick
NASA Jet Propulsion Laboratory
Pasadena, CA 91109
peter.r.gluck@ipl.nasa.gov

Dr. Gerard J. Holzmann
Computing Science Research
Bell Labs, Murray Hill, NJ 07974
gerard@research.bell-labs.com

Abstract—Flight software is the central nervous system of
modern spacecraft. Verifying spacecraft flight software to
assure that it operates correctly and safely is presently an
intensive and costly process. A multitude of scenarios and
tests must be devised, executed and reviewed to provide
reasonable confidence that the software will perform as
intended and not endanger the spacecraft. Undetected
software defects on spacecraft and launch vehicles have
caused embarrassing and costly failures in recent years.

Model checking is a technique for software verification that
can detect concurrency defects that are otherwise difficult to
discover. Within appropriate constraints, a model checker
can perform an exhaustive state-space search on a software
design or implementation and alert the implementing
organization to potential design deficiencies. Unfortunately,
model checking of large software systems requires an often-
too-substantial effort in developing and maintaining the
software functional models.

A recent development in this area, however, promises to
enable software-implementing organizations to take
advantage of the usefulness of model checking without
hand-built functional models. This development is the

~ rather than of separate design models. This allows model

checking to be used without the overhead and perils
involved in maintaining separate models. |

We have attempted to apply model checking to legacy flight
software from NASA's Deep Space One (DS1) mission. This
software was implemented in 'C' and contained some known
defects at launch that are detectable with a model checker.
We will describe the model checking process, the tools used,
and the methods and conditions necessary to successfully
perform model checking on the DS1 flight software.

! 0-7803-7231-X/01/$10.00/© 2002 IEEE
" IEEEAC paper #435, Updated Oct 12, 2001

1. INTRODUCTION

The software applications we are considering in this paper
are fundamentally concurrent in nature. Many threads of
execution can be active at the same time. When these
threads share the same CPU, their executions are interleaved
in time. The particulars of the thread interleavings depend
on the thread scheduler, and are not predetermined for each
run. If all threads perform independent computations the
final result of all interleavings will be the same. But this is
not necessarily the case if the threads can interact. The
behavior of each thread of exccution can now depend subtly
on the relative timing of events in the system, which is in
part determined by the indeterminate thread interleavings.
Reliably testing a multi-threaded concurrent system can

therefore be exceptionally difficult with traditional means.
Two problems prevent the tester from doing a good job in
these cases. The first problem is the limited controllability
in a concurrent system: the tester cannot control the specifics
of thread interleavings. The second problem is the limited
observability of events: when an error is detected it can be
very hard to reconstruct the sequence of events that
preceded it, to identify the root cause.

Observations such as these have inspired work on the
construction of logic model checkers that can be used for a
more thorough analysis of concurrent systems behavior. By
constructing a model of a system, we can gain complete
control over all salient aspects of its execution, and perform
a more thorough analysis than otherwise possible. There is a
fairly long history of the construction of such model
checking systems. In 1978, for instance, Jan Hajek built a
system called ‘Approver’ [Hajek78] that could analyze
simple models of data transfer protocols with a heuristic
method based on a reachability analysis of the underlying
control graphs (i.e., a systematic exploration of the
reachable states of the graph). Similarly, the earliest direct
predecessor of the spIn model checking system that we
discuss in more detail in this paper dates from 1980 [H81].

The power of model checking systems based on reachability. ...

analysis was mﬁoW@mm significantly by two _Important
developments. Hr@,,,m@om these was the development of
@Hﬁd&»ﬂm@om. that allow one to effectively reason about
the corfectness of systems that evolve over time. Several
such logics have been developed. The most important one
for our work is the linear temporal logic (LTL) that was first
introduced by Amir Pnueli [P77]. Initially, this logic was
only used for pen and paper proofs of relatively small
concurrent systems. The ,m@@ development was the
discovery that temporal logic formulae can be translated,
even mechanically, into small test drivers that can be used
inside a model checking system to automate correctness

proofs [VW86], [GPVW95], [EHO0].

The theory of logic model checking is by now fairly well
established e.g., [CGP0O0], [H97]. In Section 2 of this paper
we first give a brief overview of how logic model checkers
such as spIn work. In Section 3 we show how SpIN models
can be extracted mechanically from ‘C’ program source text
and how a verification system can be built in this way.
Without this capability the work reported here would not
have been possible. This application is further described in
Section 4. Section 5 concludes the paper and summarizes
our findings.

2. HOw A MoDEL CHECKER WORKS

The input language of the model checker spix allows us to
build high-level models of distributed systems from three
basic components: asynchronous processes, message

channels, and mmﬁm. ag.nmav.ﬁmwd.

Each process in spIn represents an asynchronous thread of
execution. SPIN processes can interact by exchanging
messages via channels, or by competing for access to shared
data. Two types of message channels are predefined:
standard FIFO-buffered channels with a user-defined
number of slots, and unbuffered channels that can be used
for data exchanges via synchronous handshakes (i.e., the
data is passed from one process to another in a single
operation, without intermediate storage in a buffer). Data
objects can be local to a process, or global to all processes.
A small number of basic data types are supported (int, short,
byte, bool, and bit), plus a mechanism for defining higher-
level data structures from these basic elements. Other
arbitrary data-types and structures from C can be handled
separately via a mechanism for encapsulated code that we
discuss in Section 3.

SpIN requires the definition of systems that are ‘closed’ to
their environment. This means that all potential input
sources must be defined as part of the system. In practice
this is not a difficult requirement to meet. If the exact
behavior of an input source cannot be determined, a

conservative approximation can usually be made. For
instance, to analyze certain properties of a telephone system
with a model checker [HS99] we must include a statement
about the possible behavior of the subscribers that can
interact with the system. The exact behavior of a telephone
subscriber is of course ultimately unknowable, but a
conservative model of it can easily be constructed. After all,
there are only finitely many things that a telephone
subscriber can do with a phone (lift the hook, flash the hook,
or lower the hook, and dial one of a small number of
possible digits at a time). We can, for instance, readily
define a demon that generates a stream of randomly selected
events from this small set. If we can prove that the telephone
switch cannot be confused by this representation of possible
subscriber behavior (regardless of which random sequence
is generated) we have accomplished our goal. Note that the
demon can do everything that a real subscriber can do,
although the reverse is not necessarily true. (The subscriber
can, for instance, not go off-hook twice in a row without
going on-hook in between.) One way to think of the
environment models that are used in model checking to
close a system is to consider them a special type of test
driver, as often used in conventional systems testing.

There are many ways to explain how a model checker
actually works, for instance in terms of language-theory,
graph-theory, or the theory of w-automata. We will attempt
to avoid excessive formality here by first giving a short
explanation of the mechanics of the model-checking process
itself, followed by a brief sketch of its theoretic
underpinnings.

To effectively analyze a systems model, SpIn begins by
computing a state-vector that defines the initial state of the
system being modeled. Each process is minimally
represented in this state-vector by its program counter. If the
process has local variables, the set of current value
assignments for those variables is also included in the state-
vector. Each global message channel and global variable is
also represented: the message channels by their content, and
the global variables by their value assignments. Any one
particular value assignment of the state-vector defines a
global system state. We can describe correctness properties..
for the system in terms of instances of the global system
state, e.g., state X shall exist before state Y is achieved. A
violation of a correctness property implies a defect in the as-
built system, the system requirements, or the way the
property was specified. The model checker’s objective is to
compute the minimal number of reachable system states that
are necessary to prove or disprove a given correctness
property. sp1n allows correctness properties to be defined in
terms of either finite or infinite (i.e., cyclic) executions. That
is, the tool supports the verification of both safety and
liveness properties (cf. [P77]). v

e mem e

¢

<

2 thread2: [(ptr)]

3: threadl:[tmp = shared;]

4: threadl:[tmp++;]

5: threadl:[shared = tmp;]

6: thread2:[tmp=shared;]
7 thread2:[tmp++;]

8: thread2: [shared=tmp;]
pan: precondition false: (shared==1)

&

J
S

")

In each system state, any one of the currently active
processes might perform an atomic step (we can always
chose a level of granularity of process-execution for which
this is true). The semantics of the modeling language
determine which steps are effectively executable, and which
are not. Receiving a message from a channel, for instance, is
only possible if the channel is non-empty. Similarly, we can
define that sending a message to a channel is only possible

int shared = 0;

Figure 2 — Error scenario generated by Spin of an

execution leading to assertion violation.

value ranges, and each process can only do finitely many
different things. Although each execution step performed
will modify the system state vector, only finitely many
distinct state vectors are possible (also because there are
only finitely many bits in a state vector). The set of all

int *ptr;
effectively computable states combined defines the globally
void . reachable state space of the model. Note that even in a finite
Msmmmap ?o..mam) state space there can still be executions that can persist in
i principle infinitely long if the state space contains cycles.
ptr = &shared;
tmp = shared; Clearly, a naive method of storing such a state space could
wmmv++m - mos consume huge amounts of memory, thereby limiting the
} shared = tmp; practical use of this technique. sp1n has several algorithms
to avoid this. One method, defined in [HP99], is based on
void the on-the-fly construction of a minimized recognizer for
threadZ (void)) chable states — a technique that can be likened to the
t int tmp; m BDD _storage method used in some hardware verification
if (ptr) 2 ~Systems [CGPOO]. This technique can make it possible to
{ tmp = shared; store the state space in an amount of memory that is
tmp++; exponentially smaller than the amount consumed by direct
shared = tmp; N A

assert (shared 1)

Figure 1 — Example of two asynchronous threads
competing for access to a shared variable.

when that channel is non-full. Typically, there will be
several processes (threads of execution) that could perform a
step at any given system state. Initiating or continuing
execution with any one of these processes defines a different
interleaving of process executions in time.

Trying all possible interleavings to see which ones can lead
to failure would be astoundingly complex. To avoid this
Sein uses a theory of partial order reduction [HP94] to
group process oxooszowgaﬂmmmom. This is
done in such a way that each interleaving within a given
class necessarily will have identical correctness properties.
Therefore, only one sequence from each class needs to be
inspected by spIn to achieve the effect of a fully exhaustive

inspection of all possible executions.

The input language of sein is defined in such a way that
there can always be only finitely many reachable system
states, no matter how the model is defined. There can, for
instance, be only finitely many processes, finitely many
message channels and finitely many data objects with finite

“Storage. For rare cases where the amount of memory
required to complete a correctness check still exceeds
available memory, spin also has efficient approximation
methods built in [H97]. These approximation methods make
it possible to analyze even exceptionally large models.

To check the compliance of a system with a logic system
property specified in linear temporal logic, spIn first
converts the formula into a test automaton that works much
like an observer or monitor of the system executions. While
building the system executions, the monitor is consulted at
every step to see if violations occurred. If a violation is
detected, sein displays the exact interleaving sequence
leading from the initial system state to the state where the
violation was detected. This serves as a counter-example to
the correctness claims and facilitates diagnosis of the
detected violation.

More formally, a temporal logic property defines a formal
language. The words in this language define precisely those
system executions that satisfy the property. By negating the
property, we obtain a language that formalizes all the error
sequences for that property, i.e., all the executions that do
not satisfy the property. All the feasible (i.e., possible)
executions of a spIN model also define a formal language.
We can now compute the intersection of these two
languages: the language of the negated property and the
language of the model. If the intersection is empty, there is

~Cr,

A

e
e

—

f more about the application, the model can be adjusted and

no feasible execution that violates the original property. If
the intersection is non-empty, it contains the execution
sequences that show in detail how the original property can
be violated. spin will report these sequences as counter-
examples to the correctness claims. In practice, spin does
not compute the two languages separately before it computes
their intersection: it achieves far greater efficiency by
directly computing the intersection product on-the-fly,
stopping as soon as the product can be shown to be non

empty \
As a small example, consider the C-code shown in Figure 1.
The two procedures give the code to be executed by two
concurrent threads. The first thread gives the integer pointer
variable ptr a non-zero initial value, then reads the value of
the global variable shared, increments that value by one, and
assigns the new value back to the variable. The second
thread will have no effect if it starts executing before E\ﬁmm
has a non-zero value. If it is found to have a non-zero vatie,
thread2 will perform the same steps as #hreadl, attempting
(incorrectly) to increment the value of shared by one. An
assertion at the end of thread? then checks that the value of
the variable equals one. We can check mechanically with
seiN if there exists any thread interleaving for which the
assertion might fail. We can do so by extracting a model
from each of the two threads and running the spIN model
checker on the resulting code. If we do so, the model
checker will produce the error sequence shown in Figure 2
to prove that the assertion can indeed be violated.

-

3. MODEL EXTRACTION

Until recently, the only way to use model checking in the
verification of a software application was to first construct
an accurate model of that application, formulate the

ecorrectness properties, and then to check that the properties

ol 1% hold for the model. If a property turns out not to be satisfied

+ #this could have multiple causes. The most innocuous is when

the property itself is inaccurate and has to be modified. It is
also possible that the model is inaccurate, due to an
incomplete understanding of the application. By learning.

the verification repeated. Another problem can be that the
model is accurate for some version of the application, but
was not kept up to date with further evolutionary changes in

.. the application that may affect its correctness properties.

\,,&J@m can be a difficult problem to tackle, especially in cases

where the model seems to satisfy the requirements. It can
take days or weeks to construct an accurate model of an
application, even for skilled users of model checkers, so it is
likely that the model is never quite up to date. Results of
violations reported by the model checker are all too easily
discarded by the application builders, who know that the real
application has evolved.

Many of these problems can be avoided when it becomes
possible to mechanically extract verification models from
application source code. A first such method was recently
developed for the spn model checker [HS99], and has
been applied to a number of case studies, including the
exhaustive verification of the source code for the call
processing module in a complex telephone switching system
[HS00]. It is this method that we have applied to the
verification of some of the source code modules of the DS1
spacecraft.

The spin model extractor (called m.mwsw,wu; works much like
the front-end of a standard compiler: In our case we use a
compiler front-end for the language C [KR88]. A parser
constructs a parse-tree representation of the program, which
is converted into a standard control-flow graph. This
control-flow structure for each procedure of interest is cast
in the modeling language of the sp1n model checker, but the
statements and expressions remain native C-code. A
relatively small extension of the sprn model checker [HOO0]
allows for the inclusion of basic statements and expressions
from the applications as embedded C-code inside the
models. Data can similarly be encapsulated as embedded
data inside spIN models. The model is analyzed as before,
this time executing embedded C-code fragments for the
individual atomic steps in the execution of each
asynchronous process thread, but with the control-structure
determined by sein. The model checker retains complete
control over thread interleaving and the search strategy. It
keeps track of the system state as before with a state-vector,
but this time the state-vector can include embedded data-
declarations that are lifted directly from the application
source.

The most important benefit of the model extraction process
is that it is virtually instantaneous: it can be repeated at will,
whenever the source code of the application changes.
Revisions of the application source code can thus be tracked
from day to day with model checking runs, without requiring
an addition intellectual investment to construct up to date
models for each new version of the application.

The effort to build an accurate verification model now shifts
to the construction of a fest harness. The test harness is a
small definitions file Ewﬂmimmmmzm.ﬂmm model extractor to
decide which portions of the source code are to be converted
into model fragments, and how these fragments are to be
combined in the model system. At the tester’s discretion,
large portions of the application can be excluded from the
model-checking process and replaced with simple stubs.
This is especially beneficial in cases where the test with the
model checker is run on a platform where not all

components of the actual application system are available.

(E.g., hardware interfaces, platform specific libraries, etc.)

The construction of the test harness itself undeniably also
requires some skill, but once mastered it is not time
consuming. Typically, several days worth of editing time on
an application translates into minutes of work to inspect and
where necessary update the test harness, after which a
verification suite with the model checker can be repeated.

4. APPLICATION TO DS1

We have applied model extraction and model checking to
portions of legacy flight software from NASA's Deep Space
One (DS1) mission. This software was implemented in C
and contained some known defects at launch that are
detectable with a model checker. Our objective in this trial
was to consider how we could reproduce a specific known
defect mechanically with the model extractor and model
checker.

In a first study we looked at 5,@ Qoss_Ew packet EE&Q

™

i

_.

module from DS1, consisting of aboat T2 C §otree fites-and

18 header files. ,;owm are 1162 lines of code in the header
files and 5166 lines of code in the C source files.

The first problem we had to solve was that the code is
written to execute under VxWorks, with direct access to a
specific hardware interface to the spacecraft. The model
extractor and model checker run standalone on a generic
Unix or Windows environment, without access to the
spacecraft hardware. No workstation simulation
environment was available for this code. If one had been
available, it would have been relatively easy to use the
simulated hardware within the test-harness we constructed.

We noted earlier that the model checker requires us to
define a closed system model, with all inputs and
environment parameters included. Fortunately, the
environment model does not have to be nearly as perfect as
a full-blown simulation environment: it only needs to tell us
which inputs and events in the environment might affect the
run of our chosen software module. It need not detail the
precise conditions under which those inputs or events are

SN
Hardware [—DownFifo_FifoNeedsHelp D ——— _u.oi:::x
FIFO | —DownFifo_FifoHalfEmpty —— — p| FifoTask
Buffer O Frames = = = = = = = - 4 L - -
]
N— .
]
)
Downlink '
Task 1
= =+ - -Packets - - Packet -Packets -t - -
1 Buffer
1
+ [—DownFifo_DownlinkisReady —P
! 4——————— Downlink_PurgeByAge —
]
1
'
! All
' r4— Downlink_CreateAndBufferPacket — Application
Tasks

Figure 3 — DS1 Downlink telemetry packet handling

triggered. (Similar to the phone subscriber emitting input
events for a telephone switch.) To close the downlink
module for the test with sp1n, we wrote a small library of
stubs, randomly emitting possible responses (such as
‘success’ or ‘failure’) when specific hardware or software
functions from VxWorks or from the spacecraft hardware
were invoked. This stub-library is 1343 lines of C. Of that
total, 981 lines are print statements for informational
purposes, so only 352 lines are functionally necessary.

The FEaVER test harness for this application is just 146 lines
of text. The first thing that the test harness defines is the set
of data objects in the application that hold basic state
information. The model checker uses this information to
construct the reachable state-space for the system during its
search for defects. The test-harness also defines two

o e A

asynchronous threads of execution: a DownFifo controller

LR RIS LB D

thread and the DownLink handler thread. These two threads

o N i 4
Lopsoggence s i

each read and dispatch messages in priority order. The last
component defined in the test-harness is the main test driver
that emits a random stream of valid input commands for the
module to handle during the test. (The model checker has a
built-in notion of non-determinism that guarantees that the
verification results hold for not just one, but all possible
random streams that could be generated by the test drivers.)

The code for the main control threads in the system can be
derived from the source text of the application via model
extraction, but we chose to write these modules in a few
lines of spin code instead, to gain more control over
possible variations of the priority handling mechanism.

In a first test, we left the remainder of the code in native C,
to be invoked directly by the main controller threads without
further instrumentation. The compiled test code, generated
by se1n, is linked with the stub-library to give an executable
system that performs the search for errors under the control
of the model checker.

The property that we knew up-front could fail was that when
the Downlink Purge command was given, there could be a
particular error scenario in the code that would prevent it
from being successfully executed. This can be formalized in
a simple LTL requirement on the value of a variable, say v:

Qv>0-><v=0)

The symbols [] and <> are temporal operators in LTL, and
the symbol — stands for standard logical implication (i.e., p
—> q means whenever p is true q must also be true). In
English, this requirement reads: “it is always ([]) the case
that whenever the value of v becomes greater than zero
(v>0) eventually (<) its value must return to zero at least
once (v=0).” The variable we are interested in tracking with

this requirement is Downlink waitingToPurge.

Our intent was to first perform the test for this property with
the test harness as defined above. In this first case, all code
is executed by invoking the C source code procedures
directly without further instrumentation by model extraction.
Then we would replace modules in the call chain one by one
with extracted models (with the individual execution steps of
each extracted procedure now under the control of the
model checker) until the requirement violation would reveal
itself.

In fact, two wvariations of the error scenario were
immediately discovered with the initial definition of the test
harness. (That is, with only the main controller threads
instrumented, but with all the procedures executed from
source directly without detailed interleaving control of the
model checker.) With the help of the counter-examples
provided by spin, the two variations identified were traced
back to the following possible causes.

First, the loss of a message sent into a full message buffer
could cause the purge command to be lost, leaving the
module in a state where the command had been issued but
not executed. This was precisely the known defect which we
were seeking.

Second, a persistent stream of high-priority messages could
postpone the execution of the purge command indefinitely
beyond its point of issue.

The model checker finds both scenarios in a few seconds of
runtime.

Each additional level of detail in specifying the system to be
tested increases the size and scope of the global system
state-space to be searched by the model checker. This
includes, for example, adding procedures, messages, or
processes. Although the model checker employs numerous
techniques to be efficient, these additional details cannot but
increase the execution time of the model checker. Further
investigation of the DS1 downlink area for additional
defects is possible, but was not performed in this effort due
to resource constraints.

mmﬁ&:&m% \So&im F another test, we applied spin to a
“~different module of the DS1 code. This module contains the
controllers for up to eight sequencing engines that can
execute commands in the spacecraft uploaded from the
ground. This module was significantly smaller than the
DownFifo and Downlink module considered before. Only
1894 lines of C code (both source and header files) define
the sequence controllers, to which we added about 600 lines
of source text to define the stub-library (about half of what
we needed for the first application). The larger part of the

stub library was imported without change from the first
study.

The test harness for this application is 141 lines of text, very
similar to the size of the first application. It identifies the
data to be tracked as state information, two controllers and a
test driver that randomly emits sequence activation,
deactivation, deletion, and status-list commands.

The controllers ::Qom? errors where, for instance, an
attempt is made to mmmﬁmmm an &Rm&\ active sequence or to
momo?\mﬁo an inactive sequence. A m:sﬁ_o 63@05\ to check
is that within a finite (though gmvoﬁmo& amount of time
after an activation command on an inactive sequence, that
sequence is indeed activated. The model checker can
quickly show that this property is not satisfied for the
sequence module. The reason for this is in the particular way
that the validity of a command is checked and then executed.
The controller, upon receiving an activation command will
first check if the sequence specified is already active. It will
reject the request and issue a warning if this is the case. If
inactive, the command is passed on to the sequence machine
for execution. The execution of the command, however,
happens in a different thread. So it is possible for a
deactivation command to have been checked and passed on
for execution, but not yet executed, when a subsequent
command for re-activation is received. When the
deactivation command has not yet been executed, the re-
activation command will be rejected, with a warning issued.
W.Wuv.mz

While somewhat pathological, it ig#hot inconceivable that
this could occur. Let us for thedmoment assume that the
spacecraft operators would not to WJ\ to deactivate and then
reactivate the same sequence ifi-d very short period of time.
What of autonomous on-board functions, such as fault
protection? Suppose, for example, that spacecraft fault
protection is engaged in a fault recovery which results in a
sequence being activated. Then, suppose that a second, more
critical fault is detected, and that the fault response might
include using the same sequence. It is conceivable that fault
protection may issue a command to deactivate the sequence
(in fact, fault protection typically wants all sequences
deactivated when reconfiguring the spacecraft), and then
want to re-activate the very same sequence. Could this occur
with an unfortunate timing that would prevent the sequence
from actually becoming active? That is not clear, but the
present design of the sequencing module certainly does not
preclude that possibility. This could be regarded as a latent
defect. The commands to deactivate and reactivate may look
completely valid upon inspection—yet they can fail under
certain subtle conditions that are influenced by thread
interleavings and event timings.

It was somewhat surprising to us that in this application we
could identify a potential problem in the code without

producing a detailed system model using extracted
components from the source code of the application via the
model extraction capability. A rudimentary top-level model,
making direct calls on the source code modules as written
sufficed. Clearly though, for a truly thorough check, model
extraction will be essential in building the test harness. The
errors revealed by the coarser models we used would
necessarily also be uncovered by a more detailed model, but
the reverse is not necessarily true: the more thorough model
could in principle reveal a greater number of errors.

5. CONCLUSION

In this work we have (1) used a model checker to detect a
known error in the launch version of the DS1 spacecraft
flight software, (2) discovered a second scenario under
which a similar error could occur, and (3) discovered a third
case in the DSI sequencing module where a rare race
condition could cause a sequence to fail to become active. In
doing so, we have taken the first steps towards learning how
to apply model-checking techniques to the verification of
spacecraft flight software. These steps include

* Defining and describing correctness properties (from
requirements and design specifications)

e Constructing a fest harness to interact with the
module(s) being checked

* Analyzing and interpreting results for plausibility and
criticality.

When a property violation is discovered, it is important to
determine the cause of the violation. Was there really a
serious violation of the requirements or expected behavior?
Or perhaps the test inputs were unrealistic, or the violated
property was improperly specified? There are several
reasons why a model checker might discover a problem, and
not all of them are due to actual defects in the software
product. In our case, it took a bit of initial effort to define
some correctness properties, but once the initial set was
established, it became much easier to see what to do and
how to do it. Many correctness properties are common to
multiple modules within the system and are therefore reused
throughout the system.

The same was true of the test harness. But we found that we
were able to reuse significant portions of the test harness
from one module to another.

Although this may appear to be a substantial amount of
work, it is really no different from the engineering required
to do conventional testing. The tester still needs to think
about what will have to be tested (i.e., formulate the
required correctness properties) and how you will interact
with the test article (fest harness). The difference is that
model checking gives the tester the opportunity to detect

race conditions, deadlocks, and other interleavings that may

occur only m%onn__om:vw if at all, during conventional testing
Model checkers operating on as-built code-extracted models

can also verify software much more quickly than human
testers, and should prove useful in regression testing to show
that new concurrency defects have not been introduced by
modifications to existing software. We believe that model
checkers are a useful and effective tool in the software
testers toolchest.

6. ACKNOWLEDGEMENTS

The work described in this paper was performed jointly at
the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics
and Space Administration, and at Lucent Technologies -
Bell Labs Research. Grateful acknowledgement is made to
JPL's Center for Space Mission Information and Software
Systems for their support to this effort.

7. REFERENCES

[CGPO0] E.M. Clarke, O.Grumberg, D.A. Peled, Model
Checking, MIT Press, Jan.2000.

[EHOO] K. Etessami, G.J. Holzmann, Optimizing Buchi
Automata, Proc. 11th Int. Conf. on Concurrency Theory,
CONCUR 2000, August 2000.

[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper,
Simple on-the-fly automatic verification of linear temporal
logic, Proc. Conf. On Protocol Specification, T esting, and
Verification, Warsaw, Poland 1995, Chapman and Hall, Pp-
3-18.

[Hajek78] J. Hajek, Automatically verified data transfer
protocols, Proc. 4th ICCC, Kyoto, 1978, pp. 749-756.

[H81] GJ. Holzmann, Pan, a protocol specification
analyzer, AT&T Bell Laboratories Technical Memorandum,
TM81-11271-5, 1981.

[HP94] G.J. Holzmann, and D. Peled, An Improvement in
Formal Verification, Proc. Formal Description Technique,
Chapman Hall, Berne Switzerland, October 1994, pp. 197-
211.

[H97] G. J. Holzmann, The Model Checker Spin, /EEE
Trans. on Sofiware Engineering, Vol. 23, No. 5, pp. 279-
295, May 1997.

[HP99] G.J. Holzmann and A. Purii A Minimized
Automaton Representation of Reachable States, Software
Tools for Technology Transfer, Springer Verlag, Vol. 2, 3,
pp. 270-278, November 1999.

[HS99] G. J. Holzmann, and M.H. Smith, Software model
checking - Extracting verification models from source code,
Formal Methods for Protocol Engineering and Distributed
Systems, Oct. 1999, Kluwer Academic Publ., pp. 481-497.

[HS00] G.J. Holzmann, and M.H. Smith, Automating
Software Feature Verification, Bell Labs Technical Journal,
Special Issue on Software Complexity, April 2000.

[HOO] G.J. Holzmann, Logic Verification of ANSI-C Code
with Spin, Proc. 7" Int. Spin Workshop on Model Checking
Software, SPIN2000, Stanford Univ. CA., Sept. 2000,
Springer Verlag, LNCS 1885, pp. 131-147.

[KR88] B.W. Kernighan, and D.M. Ritchie, The C
Programming Language, 2nd Edition, Prentice Hall,
Englewood Cliffs, N.J., 1988.

[P77] A. Pnueli, The temporal logic of programs, Proc. 18th
IEEE Symposium on Foundations of Computer Science,
1977, Providence, R.1., pp. 46-57.

[SPIN] The Spin tool is available at;
http://netlib.bell-labs.com/netlib/spin/whatispin.htm] .

[VW86] M.Y. Vardi, and P. Wolper, An automata-theoretic
approach to automatic program verification, Proc. Symp. on
Logic in Computer Science, Cambridge, June 1986, pp. 322-
331.

