Title: Supersaturation in Tropical Storms Measured during CAMEX-3 and CAMEX-4

Authors:

Robert L. Herman (1), Andrew J. Heymsfield (2), Leonhard Pfister (3), T. Paul Bui (3),
Jonathan Dean-Day (3), Cynthia H. Twohy (4), Kevin Noone (5)

(1) Jet Propulsion Laboratory, California Institute of Technology
(2) NCAR
(3) NASA Ames Research Center
(4) Oregon State University
(5) Stockholm University

Abstract:
The meteorology and cloud microphysics of hurricanes were studied during NASA’s
Third and Fourth Convection and Moisture Experiments (CAMEX-3 and CAMEX-4) in
the summers of 1998 and 2001, respectively. In-situ instrumentation on the NASA DC-8
aircraft included the JPL Laser Hygrometer, the Meteorological Measurement System
(MMS) for measurements of pressure, temperature, and winds, a 2DP particle
spectrometer, a Cloud Particle Imager (CPI), and for measurements of cloud water
content, a Counterflow Virtual Impactor (CVI) and a Neuzorov Probe. On several
flights, the DC-8 intercepted intense updrafts in the upper levels of tropical storms.
Within these updrafts were ice particles and significant supersaturations (10 to 20% or
more). This paper will examine the supersaturations and particle properties within
updrafts to better understand the evolution of ice particles in tropical storms.