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Abstract

A new technique for projecting high-
dimensional data to low-dimensional spaces,
called locally linear embedding (LLE), has
recently been introduced. LLE offers many
benefits over traditional alternatives, such
as principal component analysis (PCA) and
multi-dimensional scaling (MDS). In this pa-
per, we generalize LLE to use Mercer kernels,
resulting in a method we call KLLE. Mercer
kernels have recently become very popular,
due in large part to many recent successes
in applying kernel methods such as support
vector machines (SVMs) and kernel PCA to
many real world problems. KLLE provides
a powerful new tool for visualizing how Mer-
cer kernels (implicitly) project data from in-
put space to kernel feature space, which is an
open and critical issue for better understand-
ing how kernel methods work and how to best
apply them.

ICONIP 2001 Session 7.11: Special session on Sup-
port vector machines and kernel methods.

1. Introduction

Recently, many traditional linear methods have
been generalized to powerful corresponding nonlin-
ear forms using Mercer kernels, including Principal
Component Analysis (PCA) [12], kmeans clustering
[11] nearest-neighbors [11], and Fisher discriminates
[8]. Also, new methods employing kernels, includ-
ing SVM classification [1] and SVM regression [13]
have been introduced. Many recent applications
have successfully demonstrated the power of such
kernel methods (e.g. see [6]).

In this paper, we apply Mercer kernels to a very
recent promising dimensionality reduction method
called locally-linear embedding (LLE) [9], resulting

in a new kernelized form of LLE which we call
KLLE.

Visualizing what various kernels do to high-
dimensional data, as they project the data into even
higher-dimensional feature spaces, is a critical out-
standing issue in current kernel methods research
[14]. KLLE enables us to easily visualize the impact
of a given kernel on a given dataset. It could also
provide an interesting alternative to other dimen-
sionality reduction methods (e.g. PCA) for speed-
ing up any machine learning method.

2. Locally-Linear Embedding (LLE)

Two popular traditional methods for project-
ing data into lower-dimensional spaces are multi-
dimensional scaling (MDS) [2] and principal compo-
nent analysis (PCA). PCA finds linear projections
of greatest variance, by computing the eigenvectors
of the data covariance matrice with highest eigen-
values. MDS finds projections which minimize the
“stress” of violating metric pairwise distances be-
tween examples. When the distance metric is Eu-
clidian, PCA and MDS give the same result.

Whereas PCA and MDS perform linear dimension-
ality reduction, the new LLE method [9] offers a
means of nonlinear dimensionality reduction. Un-
like other nonlinear methods, LLE is computation-
ally very simple, involving closed-form linear aleb-
graic operations and suffering no local minima prob-
lems.

LLE essentially tries to find local linear patches
around each example on a low-dimensional man-
ifold embedded in the high-dimensional space.
When such a low-dimensional manifold exists, LLE
can be very effective in discovering it.

Given ¢-by-D data X (where £ is the number of
examples and D is the input dimensionality), a de-
sired embedding dimension d (typically 2 or 3 when



cally much more slower (when ¢ is much larger than
D).

The polynomial kernel is defined by a non-linearly
squashed dot product of the following form:

K(u,v) = (u-v+r)4, 9)

with polynomial degree parameter d. Varying the
continuous offset parameter changes the relative
weighting of the (implicit) terms in the non-linear
polynomial feature space. We will refer to instances
of this kernel as “POLY d ¢,

One of the most popular kernels is the radial basis
Junction (RBF) kernel:

K(u,v) = e~ 72 " (10)

with variance parameter o, giving a different non-
linear squashing of the dot product of the two ex-

amples. 1 We will refer to instances of this kernel

as “RBF g”, where g = g

3.2 Kernel Distances

The (Euclidian) distance between examples z; and
z; in the feature space of the kernel is, by definition:

dij = dist(¢(z;), p(z;)) = v lo(2:) — d(z)if2).

(11)

Distances can be computed directly from kernel val-

ues:
dij = \/K,-i—ZKij+ij. (12)

3.3 KLLE

Kernelized LLE is based on a simple idea: use ker-
nel distance to find the nearest neighbors in the
kernel’s feature space, instead of finding neighbors
in the original input space (as LLE does).

To find nearest neighbors (i.e. each set n(z;)) in
time sub-linear in ¢, one can employ various effi-
cient indexing methods that support general metric
distances. Specifically, we use vantage-point (VP)
trees [16].

To find the optimal weights for reconstructing ex-
ample z; from it's K neighbors, we must now com-
pute the covariance matrix in feature space, which
is:

V.’L”j,.’l,‘/c S 77(.2'1‘) Cjk = Kii‘l(ij‘Ki/c +Kjk. (13)

'Where 2-norm defined as o~ = (w-u—2y.
v+v-y).

This results from replacing each term z, in Equa-
tion 3 with ¢(z,), i.e.:

Cii = ((z;) - () - (B(y) ~ o(xy)), (14)

and replacing each resulting term of form d(zy) -
é(zp) with the corresponding kernel value K =

K(za,zb).

Given these covariance matrices Cjy;. for each exam-
ple z;, we can compute the weights matrix ¥ and
the embedding matrix ¥ in the same way as for
LLE earlier.

3.4 Semi-Supervised KLLE

In many applications, at least some of the examples
have known class labels. One can take advantage
of such labels when using KLLE by searching for
the kernel for which the classes are best separated
in the lower d-dimensional projections produced by
KLLE. In our experiments, we have trained linear
SVMs on the projected (2-dimensional) data for
various kernels, and selected the kernel for which
the resulting misclassification rate is lowest. One
might further use such search to also find the best
neighborhood size (K) and projection dimension
(d) for a given domain.

4. Examples

To demonstrate the performance of KLLE versus
LLE and PCA, we use the well-known MNIST
handwritten digit data [7). MNIST is a common
benchmark dataset in SVM research, for which
SVMs have recently been shown to achieve the best
known test classification rates (4]. Each digit im-
age is 28-by-28 pixels (i.e. input dimensionality is
D = 784), with 256 grayscale levels.

Figures 1,2, and 3 show some results in projecting
MNIST data for digits “3” and “8” to two dimen-
sions, using LLE, KLLE, and PCA respectively. For
easier visualization, we did this for only the first 200
examples of each of these two digits.

The three dashed lines in each figure show the mar-
gins of a linear SVM trained on the pro jected two-
dimensional data. Notice that KLLE provides pro-
Jected data for which the linear SVM can better sep-
arate the two classes than for projected data from
LLE (i.e. KLLE with a linear kernel).

Furthermore, both KLLE and LLE provide projec-
tions which are more useful for the linear SVM than
that of PCA. As Figure 3 illustrates, PCA tends to



Nn=200, Np=200; KLLE: kernel="poly 2 .001’, K=8, secs=3.17; SVM: kernel="linear’,C=2, secs=0.04, errs=33, rate=0.083)
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Figure 2. KLLE projection (“poly 2 0.001” kernel).
Same as Figure 1, but using KLLE with polynomial degree 2 kernel. The misclassification rate by a linear SVM in

the projected 2-D space is 8.3%.

More experiments are required to see Jjust how well
the qualitative nature of KLLE projections indeed
tend to correlate with the qualitative nature of ker-
nel methods such SVMs, but this appears to be a
very promising avenue for future work.

We are currently exploring use of KLLE methods to
visualize SVM and kernel performance on challeng-
ing NASA applications, such as classifying massive
MISR Earth image datasets [15].
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