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Chapter 12 Title: Exploiting Graphs
12.1 Introduction

This chapter describes some things that can be done with graphs that go way beyond
the mundane plotting of waveforms. In particular, we are interested in using graphs to
draw complex animated images but we will also go into other topics, including the
mundane plotting of waveforms. First we will cover the basic skills and then we will
look at some examples from projects where these skills are used at NASA’s Jet
Propulsion Laboratory.

12.2 Basic Graph Skills

In this section, we will cover the basics of graphs and then the skills we need to
exploit them.

12.2.1 Graph Basics

Some of the basics we need to exploit graphs are already covered in the LabVIEW
documentation but we will review them again here and then go on to more topics.

12.2.1.1 Graph Data Types

XY Graphs accept plot data in one of two data types: an array of clusters containing
X and Y values (Figure 1), and a cluster containing an array of X values and an array
of Y values (Figure 2). Note that the terminal for the XY Graph changes to reflect the

data type.
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Figure 2: XY Graph data type 2 - A cluster containing an X array and a Y array.

These diagrams draw a four-sided irregular polygon. Note that the first point, (2,0), is
replicated as the last point in order to close the outline. Figure 3 shows the graph that
these diagrams produce.



Figure 3: Graph produced by Figures 1 and 2 (and 10).

Although both of these data types are equivalent in terms of defining an outline, they
have the disadvantage of taking up a lot of real estate on the diagram, and they can be
a nightmare when it comes to performing the simple operation of translation
(offsetting an object to a different location on the graph) or the much more
cumbersome operation of rotation. (The operation of scaling, or sizing, is easy for any
data type, since it involves only multiplying.)

12.2.1.2 Translation

To illustrate, Figures 4 and 5 show what it takes to translate or offset the object in
Figure 3 by two units to the right and three units down. Figure 6 shows the resulting
graph. Note that for type 1, you have to manually construct the right kind of cluster
constant. You cannot just right-click on the unused input of the Add operator and
select Create Constant because it will create an array of the same type that is present
on the other input. However, you can CTRL-drag one of the cluster elements from
within the array and place it near the unused Add input.
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Figure 4: Translation for data type I.
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Figure 5: Translation for data type 2.

Figure 6: Graph illustrating translation produced by Figures 4 and 5 (and 11). -

12.2.1.3 Rotation

Figures 7 and 8 illustrate what it takes to rotate an image in a counter-clockwise
direction about the origin by 90 degrees (pi divided by two) and Figure 9 shows the

resulting graph.

Figure 7: Rotation for data type 1.
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Figure 8: Rotation for data type 2.

Figure 9: Graph illustrating rotation produced by Figure 7 and 8 (and 12).

Clearly the second data type is a little easier on which to perform rotation but it has
the disadvantage of making data entry more difficult for large numbers of points
because you have to be careful to keep the two separate arrays aligned.

12.2.2 Complex Numbers to the Rescue

The solution to all these problems is to use complex numbers. Complex numbers are
a convenient way both to represent two-dimensional outlines or shapes and to
perform all the operations of translation, rotation and sizing. They also make it easy
to animate complicated objects.

Complex numbers have a real and an imaginary part. When you view a complex
number in LabVIEW you will see the real part on the left and the imaginary part on
the right followed by the letter “i”. The imaginary part always displays a sign that
also serves to separate the two parts. To get an imaginary number on the diagram,
simply put down a numeric constant and change its representation to CSG. There is



no point in using a higher precision for numbers that will eventually be displayed on a
graph.

There are several ways to enter values into complex number constants. You can
always triple-click on the number, highlighting the entire display, and type in the real
part followed by the imaginary part (with its sign) and the letter “i”. Don’t leave off
the “i” or the values will get corrupted. You can also double-click on just the real or
imaginary part and enter them separately. This has the advantage of not requiring you
to enter the letter “i”. There is a special trick that works for complex numbers with a
precision of zero (as our examples have). If you double-click to the left of the real
part when it is only one digit, both the real and imaginary parts get highlighted
without the “i”. Now you can type in the real and imaginary parts (separated by a
sign) and hit return without typing an “i”. Is this a feature or a bug? Well, it seems to
work only with version 6i on a PC, so it probably is a bug, but take advantage of it
while you can.

When used to represent points on a graph, the real part of a complex number is the
horizontal or X component and the imaginary part is the vertical or Y component.
Before a complex array can be drawn to a graph it must be converted to one of the
two types acceptable to an XY graph. The obvious choice is the one shown in Figure
2, a cluster containing two arrays, the horizontal (realy array and the vertical
(imaginary) array. Figure 10 illustrates how to make the conversion. Note that using a
complex array always keeps the two components together (unlike the arrays in Figure
2). The plot drawn by this figure is identical to Figure 3.

Figure 10: Complex number equivalent to Figures 1 and 2
(creating the outline in Figure 3).

Of course it could be argued that having to convert the complex array to the correct
data type for a graph is too much of a burden to make it worthwhile but the real
advantage comes when you want to perform operations. Compare Figure 11, the
complex number solution to performing translation with Figure 4 or 5.
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Figure 11: Complex number equivalent to Figures 4 and 5
(performing the offset in Figure 6).
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If that won’t persuade you, compare Figure 12, the complex number solution to
performing rotation with Figure 7 or 8.
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Figure 12: Complex number equivalent to Figures 7 and
8 (performing the rotation in Figure 9).

The key to understanding how rotation works is to realize that complex numbers can
be represented as either having a real and an imaginary part (the only way LabVIEW
displays them) or as a magnitude and an angle. Multiplying two complex numbers is
performed by multiplying the magnitudes of the two numbers and adding their angles.
In this example, we use a magnitude of 1.00 for the multiplier and any desired phase
(in radians). LabVIEW takes care of all the arithmetic and trigonometric operations
identical to what is shown in Figures 7 and 8. As an added benefit, we can set the
constant to something other than 1.00 to resize the object for free.

By the way, if we ever wanted to resize an object that was represented with an array
of complex numbers, we would multiply the array by a complex constant with the
real part set to the size factor and the imaginary part set to zero. Actually, we could
use a simple numeric constant rather than a complex one and let LabVIEW coerce it
to complex inside the multiply function.

Since we often will want to enter angles in degrees rather than radians, we will
present a simple way to convert from degrees to radians. The straightforward way is
to divide the value in degrees by 180 and multiply by pi. A simple way that takes up
less real estate is to use a constant (or a control) that has a “deg” unit label applied to
it and then use a Convert Unit set to “rad” as shown in Figure 13.

Figure 13: A straightforward and a simple way to convert degrees to radians.

This scheme actually removes the unit from the constant but converts it to radians
before doing so. If you don’t remember how to code units, first make sure the
constant is an SGL type, right-click on the constant, select “Visible Items” and then
“Unit Label” and enter “deg” into the box that appears to the right of the numeric
constant. Next, get the “Convert Unit” icon from the Numeric/Conversion palette and
enter “rad” into it.

12.2.3 Making Filled Shapes

Now we will look into filling our outline with a solid color. To make a filled shape,
we need two plots, one of which will be filled to the other one. An easy way to create



this second plot is to simply reverse the order of the complex array defining the first
plot. We need to then perform the usual conversion to the plot data type and then
build the two plots into an array. Figure 14 shows the completed diagram.

Figure 14: A simple way to fill a plot outline.

On the front panel, we need to drag down the Plot Legend to include two plots, click
on Plot [, go to Fill Base Line, and select Plot 0. You can then select a color for Plot
0 which will become the outline color and a different color for Plot | which will
become the fill color. Figure 15 shows the resultant graph.

Figure 15: Filling Plot 1 to Plot O (see diagram in Figure 14).

Simply reversing the order of the original array to create the second array may not be
the best scheme. A better approach is to break the initial array in half, replicate the
last element of the first half as the first element of the second half, and then reverse
the order of the second half. Not only does this procedure work better on different
platforms and with different printers, it results in plots that are half as large. Figure 16
shows a subVI to perform this function and Figure 17 shows its use. This subVI is
available in versions 5.0 and 6i of LabVIEW on the CD included with this book.
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Figure 17: Use of the Fill Plot subVI (produces graph in Figure 15).

There is one additional step to make the graph work with an outline color different
than the fill color when this subVI is used. You have to set two colors on the second
plot by hitting the spacebar to select between them. The one on the right is the outline
color and should be the same as the first plot and the one on the left is the fill color.

Instead of manually setting the plot colors and fill parameters, you can use property
nodes to do the same thing. This is especially useful if you have a very large number
of plots.

Be warned that the filling of convoluted outlines does not always work for all
platforms and for all printers. It seems to work best under Windows with LabVIEW
61, but you should always test results for your application. If you find a shape that
does not work with the simple scheme of reversing the array or by using the Fill Plot
VI, then you will have to break the image up into smaller overlapping pieces that
mask the problem. We will not address this issue any more.

12.2.4 Animation

Now that we have covered the basics it’s time to look at animation. We will use as a
basis for learning about animation the robotic arm example, which you can find at
LabVIEW/examples/picture/robot.1lb/robot.vi. (This example is not available in the
Base LabVIEW package.) See Figure 18.



Figure 18: Front panel of robot example VL

12.2.4.1 Robot Arm Example

The robot arm example has several parameters that can be adjusted by the user
including three joint rotations, two arm lengths, and the claw opening. We will not
use the Light Direction control but will instead use the Fancy style to add a black
outline to all the objects just as shown in Figure 18 for the claw.

When developing the plots for a graph, we will always start with the most stationary
object, in this case, joint A, and work our way to the most extreme object, in this case,
the claw. However, the order that the plots are applied to the graph needs to be based
on the priority of display. The Claw is always foremost on the graph, followed by its
Joint, then Joint B, Arm B, Joint A and finally Arm A. These various objects will be
created with their own subVI’s. To make it more convenient to arrange these subVI's
on the diagram, we will put the subV1 for the most stationary object, Joint A at the
bottom and work our way to the top.

Another important function of these subVI’s is to provide offsets and rotations from
one object to the next connected object. If an object can be rotated and causes the
subsequent objects to rotate with it, then the subVI will add its rotation to subsequent



rotations. In a similar way, if an object provides an offset to subsequent objects, then
the subVI will add its offset to subsequent offsets. We will place a dummy point in
the shape-defining array so that we can calculate its new offset and then split the
array and extract this dummy point from the points that are drawn on the plot so that
we can add it to subsequent offsets.

12.2.4.2 Plot Circle

The diagram of our first subVI called Plot Circle is shown in Figure 19. It, as well as
the remainder of the subVT’s for this example, are in PlotRobot.1Ib for versions 5.0
and 6i of LabVIEW on the CD.
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Figure 19: Diagram of Plot Circle VL

We will use this subVI to draw the joints. Since plots cannot draw circles we will
approximate them as regular polygons with a large number of sides or segments.
There are two parameters passed to this subVI to define the circle, the Radius and the
Number of Segments. We first divide the Number of Segments into 2*pi, a full circle,
and use this value as an increment for the angle applied to a Polar To Complex
converter. The Radius is also applied to this converter. The array coming out of the
For Loop contains the complex numbers defining the polygon approximating our
circle. Note that this array contains one more point than the number of segments in
order to fulfill the requirement of the first point being replicated as the last. The array
of complex values has its origin at zero but if the circle has an Offset In then it is
added to the array before generating the Plot. Both the Rotation and Offset Inputs are
brought out unchanged since the circle in this application does not affect the offset of
objects connected to it. For convenience in testing and demonstrating the subVI, we
also convert the complex array into the type required for an XY Graph and put the
graph on the front panel. The front panel of the Plot Circle subVI is shown in Figure
20 and the connector pane is shown in Figure 21.
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Figure 20: Front panel of Plot Circle VI.
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Figure 21: Connector pane of Plot Circle VI.

12.2.4.3 Plot Span

The next subV1, Plot Span is used to create the arms. It defines a trapezoid, which is a
four-sided polygon similar to a rectangle, but with tapering sides. The input
parameters allow us to specify the length and the two end widths which are the same



as the diameters of the two circles superimposed as joints on the ends of the arms but
for convenience we will use the radius values of these two circles. The Joint input
allows us to specify the angle of the arm.

Figure 22 shows the diagram of Plot Span. The first thing it does is build an array
consisting of the points defining the trapezoid, plus (as the first element) one
additional dummy point as mentioned earlier to provide the offset that is applied to
the next objects attached to the arm. When we are defining these points, we assume
that the arm is horizontal, extending from the origin to the right. This first element,
the dummy point, is located at the center of the far end of the arm. Since the arm is
horizontal, the coordinates of this point are merely the Length and zero. We apply
these values to a Re/Im To Complex converter to get the first element of the array.
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Figure 22: Diagram of Plot Span VL.

The next element is the first element of the polygon, which is located at the upper
right corner of the horizontal arm. Its coordinates are the Length of the arm and the
second Radius. Again, these two coordinates are converted to a complex number and
- applied to the Build Array function. This point is also applied to the last element of
the array to fulfill the requirement to replicate the first point of the polygon as the
last. The next point is in the upper left corner of the horizontal arm. The coordinates
are zero and the first Radius.

The next two points are a repeat of the first two points of the polygon (in opposite
order) except that the signs of the vertical components are changed. We could have
changed the signs of Radius 1 and 2 and converted these to complex numbers but the
Complex Conjugate function allows us to do it more conveniently by merely taking
the complex conjugates of the previously defined points. (The symbol in the icon for
the Complex Conjugate looks like x*.)



Now that we have the array built, we need to apply a rotation. The rotation is a
combination of any previous rotation plus the rotation defined by the Joint control.
This sum is also brought out to apply to the more extreme objects. To apply it to this
object, we connect it to the theta input of a Polar to Complex converter with the “r”
input set to 1.00. This complex number is multiplied by the array. Remember that
multiplying complex numbers together is the same as multiplying their magnitudes
and adding their phases so this one simple operation takes the place of all the
components in Figure 7 or 8.

After rotating we add the offset. Note that unlike the Rotation In and Out, which are
simple numbers, the Offset In and Out are complex numbers. As mentioned earlier,
the first element of the array is extracted and applied as the Offset Out. The remaining
part of the array produces the Plot and again we convert it to the type required for an
XY Graph for diagnostic purposes. Figure 23 shows the front panel of Plot Span and

Figure 24 shows its connector pane.



PlotSpan.vi

Figure 23: Front panel of Plot Span VI.
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Figure 24: Connector pane of Plot Span VL




12.2.4.4 Plot Claw

The final subVI is Plot Claw. Its diagram is shown in Figure 25. This subVI defines
most of the points of the horizontal claw as fixed coordinates but the two end points
are calculated as radius points from the center of the joint on which the claw is
mounted. The normalized claw value is multiplied by an empirically derived factor
(0.26) that converts it into radians and is applied to the theta input of a Polar To
Complex converter. The “r” input is the distance from the end points to the center of
the joint. This produces the coordinates of the end point of the horizontal upper claw.
Again, we use the Complex Conjugate function to generate the coordinates of the
lower claw from the upper claw.
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Figure 25: Diagram of Plot Claw VL

Next we apply the rotation and offset factors just as we did for the span except that
since there are no further objects attached to this one, we don’t bother to calculate a
new offset we just pass the input straight through.

The front panel of Plot Claw is shown if Figure 26 and the connector pane is shown
in Figure 27.
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12.2.4.5 Plot Robot

Figure 26: Front panel of Plot Claw VL
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Figure 27: Connector pane of Plot Claw VL.



Finally we come to the top level VI called Plot Robot that uses all these subVI’s. Its
diagram is shown in Figure 28. There are two functions inside the loop. The
uppermost part calculates the plots of the different objects making up the robotic arm
and the lower part applies the colors to the property nodes for the plots whenever one
of them or the style changes. There are a total of six pairs of plots. Remember that
each pair draws one object by filling from the second plot of the pair to the first one.
The Fill Plot subVI expands the outline of each object into a pair of plots so that one
can be filled to the other.
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Arm B is made up of a circle of radius 11.20 with 32 segments and a span similar to
Arm A but with a different set of parameters.

Finally, at the top we have the claw, which is made up of a circle of radius 7.84 with
24 segments and the Plot Claw subVI.

The front panel of Plot Robot is shown in Figure 29. It looks very much like the
Robot example VI (Figure 18) with the exception of the Light Direction control and it
behaves in exactly the same way.

Figure 29: Front panel of Plot Robot VL

12.2.5 Segmented Plots

The next section deals with a subject that often comes up when making graphs. It
conveniently solves the problem of drawing a large number of disconnected lines by
using a single plot instead of having a separate plot for each one. The trick here is to
use NaN to separate the objects. When the graph drawing routine comes to an X-Y
pair of NaN’s it stops drawing a continuous line, in effect lifting the pen, and
beginning again with the next element in the arrays. Figure 30 illustrates an example
diagram to draw a bunch of random irregular objects scattered on the graph. Note that
when the array is built to add another object to the final array, a NaN complex value



is added after each one. There is only one plot on the graph shown in Figure 31, even
though it looks like there are twenty. This example shows closed polygons but the
technique can also be used to show arrowheads or even letters of the alphabet. This
subVI is available on the CD.

Figure 30: Diagram of Plot Multi Outlines VL.



Figure 31: Front panel of Plot Multi Outlines VL

12.2.6 Simulating an Intensity Graph Using an XY Graph

Now we come to a way to simulate approximately what an intensity graph does but
on an XY Graph. This technique provides a way to arbitrarily color various areas of a
graph. This example shows intensity as a function of the distance from the origin.

The diagram in Figure 32 contains four For Loops. The one at the top is an
initialization sequence, setting up the properties of the graph so that each plot has a
point style with the largest solid square point available. There are eight plots, each
with a different shade varying from light to dark. The For Loop also creates empty
arrays of complex numbers bundled one for each plot that will eventually contain
coordinates for each color. In a real application, this For Loop would only be
executed once.
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Figure 32: Diagram of Intensity VL

At the bottom of the diagram is a pair of nested For Loops, which generate the data
that are to be displayed. The data consist of two arrays, the lower one for the
coordinates of a point, and upper one for the intensity of the point. In this example,
there is one point for every position on the graph, but in a real application, the pair of
arrays could be generated by any means and doesn’t even have to cover the entire
graph.



The working part of the diagram is the For Loops in the middle. The nested For
Loops on the left sort through all the elements of the arrays coming in from the
bottom and adds each point to one of the eight plots depending on its intensity value.
Note that it is the coordinates of the point that are added to one of the plot arrays. '
After the nested loops finish running, another loop is used to convert the complex
number type to the type required by the plot. Figure 33 shows the resulting graph.
This subVTI is available on the CD.
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Figure 33: Front panel of Intensity VI.

The graph has to be manually resized to eliminate any gaps between the points. In a
real application, the graph could actually be resized even smaller in which case the
points will appear smaller because they overlap with priority given to the lower
numbered plots.

12.2.7 Simulating a Waveform Chart Using an XY Graph

Sometimes you would like to take advantage of the convenience of a Waveform
Chart because it automatically keeps a history of old points and keeps track of the X
coordinate. However, if you need to display real time along the X axis and especially
if your data points are not evenly spaced in time or if you have multiple plots which



may not all update at the same time, you must use an XY Graph instead. In this
section, we will cover a few tricks that allow you to overcome some problems that
might otherwise make this an unpleasant task.

The first problem has to do with handling the arrays that are updated each time new
data points are added to the graph. If you do the obvious thing and start with empty
arrays, you will create for yourself a quagmire of trying to keep track of the pointers
that are used to delete the oldest array elements. Keep in mind that the arrays start
with the oldest data and end with the newest. In general, we will want to append new
data points on the end of the arrays and delete the first elements but this will prevent
us from getting started because we will end up deleting the points just added unless
we take special precautions.

The trick is to initialize the arrays with a fixed number of NaN’s and always keep the
size of the arrays constant. Remember from our previous discussion that points with
NaN in them will not display at all. Now it is a simple matter of appending new
points to the end and deleting the first points. The only thing we have to watch out for
is that we provide enough elements in the arrays to handle the maximum range that
we will want to display. If the points are added at a fixed rate, this will be easy to
calculate. If they can be added at a variable rate, we will take the maximum rate and
multiply this by the range of time the graph will cover (plus a few more to be on the
safe side). An easy way to determine when it is necessary to perform the initialization
is to check the size of any one of the arrays and initialize all of them if it is zero.

There are two ways to store the arrays. Back in the early days of LabVIEW, we had
just the first way, which was to use shift registers on loops that executed once per
update. Now we have a second way, which is to use a local variable reference to the
graph itself. We use the second method in this example.

We can also use either of the two graph data types to process the arrays (see Figures 1
and 2) but unlike our previous skills involving complex numbers which used graph
data type 2, waveforms are better suited to graph data type 1.

The second problem that we have to deal with when using an XY Graph to simulate a
Waveform Chart is ranging. There are several problems with allowing the graph to
autoscale, not the least of which is that it will leave blank space on both edges of the
graph (see Figure 34). Instead we want to give the illusion that the waveform is
scrolling off the left edge of the graph.



Figure 34: Autoscaling a Simulated Waveform Chart.

We want to simulate the strip chart update mode. To do this, we could take the most
recent time and plug this into an XScale.Maximum property node and subtract from
this the range of time we want the graph to cover and plug this into an
XScale.Minimum property node, but this has the following disadvantages.

First, the graph will put gridlines at intervals that will not generally coincide with the
maximum (most recent) time or the minimum (oldest) time. What usually happens is
that a vertical gridline appears so close to the maximum time that it does not have
room for a display, which can be confusing to the user because it looks like the time
of the gridline is the maximum time. See Figure 35.

XY Graph

Figure 35: Using the Most Recent Time as the Maximum.

Second, the entire waveform will scroll on every update and this can be quite
annoying to the user.



The solution to these problems is to perform a special kind of roundup. First, we have
to decide how far apart we want the gridlines to be. They have to be at least far
enough apart so that there is room to display a time for every gridline and this will be
dependent on the text font, the date/time format, and the physical size of the graph.
You have to test this by trial and error. Once you have decided on a spacing (in
seconds), you will apply this to an XScale.Increment property node and use this value
in a calculation which will be applied to the XScale.Maximum property node. This
calculation involves dividing the most recent time by the increment, rounding up and
then multiplying by the increment. Finally, we subtract the range from the result and
apply it to the XScale.Minimum property node. Figure 36 shows the final result of
applying all the tricks.

Figure 36: Special Roundup Trick to Calculate Maximum Time.

In our example shown in Figure 36, the increment is 2 and the range is 10. As the
graph updates in real time, whenever the last increment overflows, the entire graph
scrolls to the left by one increment, partially filling the new last increment, which
then continues to fill until it overflows and the process repeats. It presents a very
friendly interface to the user. The diagram for the last example is shown in Figure 37.
All three examples are available on the CD in Waveform.1lb.
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Figure 37: Diagram for Simulated Waveform Chart.

12.2.8 A Warning about Time

There is one more very important trick that we need to know to make graphs work
right and look good in LabVIEW. In the previous example, the range and increment
are very small numbers. But if we had a graph with a range of several hours or days
we might find that LabVIEW would set the gridlines at oddball times, say at 5:00
P.M. instead of at midnight, even though there is only one gridline per day. This is
caused by the way that LabVIEW displays a number as a time. Remember that
LabVIEW does not have a special data type for time, it merely uses an ordinary
double-precision number that has a special meaning. According to the documentation,
this meaning is: “a time-zone-independent number that contains the number of
seconds that have elapsed since 12:00 a.m., Friday, January 1, 1904, Universal
Time”.

However, when LabVIEW displays this number formatted as Time & Date, it is no
longer independent of the time zone, nor of the daylight savings state. The
significance of this is that LabVIEW decides where to place the gridlines based on
Universal Time but marks them with local time. Daily gridlines on a graph at 5:00
PM (Pacific Daylight Time) correspond to midnight Universal Time. Similarly, if you
had a graph covering several hours, LabVIEW might place the gridlines at odd
numbered hours local time because they correspond to even numbered hours
Universal Time.

The solution to this problem (and others that we will discuss soon) is to set the time
zone on your computer to GMT. But don’t use the one for Greenwich Mean Time
because that one permits daylight savings, instead use the one for Casablanca,
Monrovia because it never goes on daylight savings.



Here is a very important experiment you should try. Place a digital display on a front
panel, keeping its value set to zero. Right-click on the display and select Format &
Precision and change the Format to Time & Date. Enlarge the display to show all the
digits. Unless your time zone is set to GMT, you will see something other than
12:00:00 AM, 01/01/1904. Now use the Date/Time control panel to change to a
different time zone but make sure the control panel is not covering up the display.
You will not see the display change, as it should, but if you cover the display with
another window such as the control panel and uncover it, it will show the correct
change. The moral of the story, don’t change time zones in the middle of a LabVIEW
session unless you remember to update the displays by covering and uncovering them
with another window. This applies to digital controls, indicators, graphs, and
constants.

The new waveform data type in LabVIEW 6i is a special cluster that includes t0, dt,
and Y. If you wire this directly to a waveform graph, it ignores the value of tO (the
real time of the first data point) and substitutes a value of zero so that the graph
displays offset time in seconds starting from zero. If you want to display real time
along the x-axis, you need to right-click on the center portion of the graph and
uncheck the last item, "Ignore Timestamp". Don't make the mistake of right-clicking
on the x-scale markers because you won't see this new menu item. You can do this
operation for data as it is acquired in real time, as well as for data that has been
previously saved to disk using the Write Waveform to File vi and later retrieved using
the Read Waveform from File vi.

Now consider this disconcerting situation. If you have collected data which is
explicitly time-tagged using Get Date/Time In Seconds or implicitly time-tagged
using the waveform data type (as described in the previous paragraph) and you
examine the data after the day light savings state has changed, you will find that the
time tags are shifted by one hour. The shift could be even greater if the time zone is
different between the computer writing the data and the computer reading the data.
This could be an embarrassing situation for you if you are trying to correlate or locate
an event in your data file based on a manually generated log of when that event
occurred.

All of the foregoing leads to the stfong conviction that you should set the time zone
for any computer using LabVIEW to GMT (Casablanca, Monrovia) as mentioned

earlier. ‘
12.2.9 Using an Intensity Graph to Display a Bitmap Image

The last technique we will cover allows us to precisely display bitmaps in an intensity
graph. This is actually fairly well covered in the LabVIEW documentation but there
are a few tricks not covered that inspire this discussion. Two of the features of the
intensity graphs are that they can automatically interpolate the colors between those
specified and they will automatically interpolate the pixels between those specified.
In other words, it is possible to under specify the colors and still get acceptable results



and you can resize the graph and still get acceptable results for most applications. But
for those applications where you want a one-to-one mapping between the elements in
the defining array and the pixels on the graph and where you want precise control of
the colors, these tricks will help.

The intensity graph can display a palette of 256 colors and there are two ways to
specify these colors, both of which require the use of property nodes. The first allows
for interpolation and will not be discussed here. The second uses an array of 256
elements of type U32 integers, which represent the 256 colors in the palette. The
meaning of the values of these numbers can best be understood by thinking of the 32-
bit integer as divided into four bytes. The first byte is a flag to specify transparent but
since this is illegal in an intensity graph, it should always be zero. The second byte is
the intensity of the red (R) component of the color, the third byte specifies the green
(G), and the fourth byte defines the blue (B) component. In this example, we will
specify a palette with 256 shades of gray, so all three of the R-G-B components will
be the same within each U32 value. Figure 38 shows the diagram of the example we
will use. This example is included on the CD as BitImage.vi.
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Figure 38: Diagram of Bit Image VL

The For Loop generates the palette of 256 colors using several Join Numbers

functions to first combine pairs of bytes into 16-bit words and then to combine them
into 32-bit words. The first word is all zeroes, specifying black. The second word is
hex 00010101 specifying the darkest shade of gray, followed by hex 00020202, and
continuing all the way up to hex OOFFFFFF which is white. This array of 256 words



is applied to a property node created from the terminal for the Intensity Graph and
selected for Color Table.

A second property is opened below the Color Table for the Plot Area Size and a
constant is created for it with both values set to 403. This is because the actual area of
the image for this example is 400 by 400 and we need to set the size parameters three
greater. Why three? It’s a trick. Your guess is as good as mine. By making the X and
Y maximums 400 (instead of the actual 399), there is a black edge of pixels along the
bottom and right hand edges of the graph. If you find this objectionable, change the
maximums to 399 and use 402 for the sizes of the plot area. Of course, the image
doesn’t have to be square, you can use any size you want. Just make sure that the
numbers you use for the Plot Area Size are three greater than the corresponding X
and Y Scale Maximums.

There are several other property nodes along the right hand edge of the diagram. All
of these properties could have been entered manually from the graph on the front
panel but for the sake of clarity, we show them explicitly in the diagram.

There is one other important trick embedded in one of these property nodes and that
is the Z Scale Minimum and Maximum. These come up as 0 and 100 when you place
a new intensity graph on a front panel so you might be inclined to change the
maximum to 255 thinking that this will cover the full range of possible intensities, but
you would be wrong. There are actually two other colors, one above the maximum
and one below the minimum. These handle intensities that are outside the specified
range. The first value in the Color Array defines the color used by intensities below
the minimum (in this case zero, making the minimum one) and the last value in the
Color Array defines the color used by intensities above the maximum (in this case
255, making the maximum 254).

The image that is displayed by this example VI is defined by a two-dimensional U8
array constant. In order to show the array in the same orientation as the graph, we
transpose the array and flip the Y Scale using another property node.

Finally, we use one last property node to turn off the scale labels and ramp since these
are meaningless for this application.

12.3 Real-World Applications

Armed with all these skills, it is time to see what they can do. These applications are
taken from several projects where LabVIEW is used at NASA'’s Jet Propulsion
Laboratory. Instead of calling them real-world applications, it might be more
appropriate to call them out-of-this-world applications.

12.3.1 Galileo



The image that is produced by the example in section 12.2.9 is shown in Figure 39. It
is a picture taken by the Galileo spacecraft of lava flows on one of Jupiter’s moons [o
that had been corrupted but fixed using a LabVIEW program. You can see the
original and read about the problem and fix at:

http://photojournal.jpl.nasa.gov/cgi-bin/PIAGenCatalogPage .pl7PIA025 17

Figure 39: Reconstructed image of lava flows on Jupiter's moon lo
taken by Galileo spacecraft (using diagram of Figure 38).

12.3.2 Mars Pathfinder Rover Mission

Next we have a pair of pictures used during the Mars Pathfinder Rover mission in
1997.

12.3.2.1 Kinematics

Figure 40 was used to show the orientation of the rover and its wheels as it navigated
the Martian terrain. The VI that generated this graph made heavy use of the skills
described in sections 12.2.2 through 12.2.4. Each of the wheels on the rover are

oo

independently suspended through the use of the bogeys. The front of the rover is to



the right in the side views. At the rear of the rover is the Alpha-Proton-X-ray-
Spectrometer (APXS) instrument, which can be lowered to contact the ground or the
face of a rock. The radial lines coming out the front and rear indicate the field of view
of the three cameras. The small squares are contact sensors that tell the rover when it
has hit an obstacle.

Figure 40: Graph orientation of rover used during Mars Pathfinder Mission in 1997.

12.3.2.2 Navigation

Figure 41 was used to show the location and path of the rover with respect to the
lander and the major rocks (shown as rectangles). This image shows the progress of
the rover on the third day. It backed down the ramp and measured the soil with its
APXS instrument. The grid lines show distances in meters. This graph also used the
techniques described in sections 12.2.2 through 12.2.4. You can learn more about the
Mars Pathfinder Mission at:

http://www .jpl.nasa. gov/missions/past/marspathfinder.html



Figure 41: Graph showing path of rover used during
Mars Pathfinder Mission in 1997.

12.3.3 SeaWinds

The SeaWinds instrument is a rotating dish radar antenna that beams down at the
surface of the ocean and senses the backscatter off the ocean surface to measure the
wind. The data consist of thousands of individual wind vectors consisting of a
latitude, longitude, magnitude and direction, far too much data to present on a graph
or for a human to comprehend. The LabVIEW VI that generates the graph in Fi gure
42 averages vectors within each 1-degree latitude by 1-degree longitude cell and then
creates streamlines that attempt to connect adjacent cells that exhibit average wind
directions that are more or less in the same direction. The streamlines are all one plot
as described in section 12.2.5. The magnitudes of the average winds are shown with
different colors using the technique from section 12.2.6.

You can learn more about this SeaWinds instrument at:

http://www.jpl.nasa.gov/missions/current/quikscat.html
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Figure 42: Graph showing winds over the oceans currently used in SeaWinds
mission.

12.3.4 Weather Station

Figure 43 shows one of the graphs from the weather station at JPL. It uses the
techniques described in section 12.2.8. You can view these graphs at:

http://weatherstation.jpl.nasa.gov
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Figure 43: Temperature Graphs from the JPL weather station.



