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To gain a better understanding of the relations between observable solar
features and solar irradiance, and to understand the evolution of these
features, we wish to segment this imagery into classes conditional on
multi-frequency images. We adopt the familiar Markov random field (MRF)
models for these feature maps so that spatially coherent labelings are
preferred. The MRF models are driven by class-conditional probabilities
which we express as mixtures of normal distributions. These distributions
may be learned directly from image feature vectors in an unsupervised
clustering context. We have found that the resulting clusters do
correspond to observable spatial structures. Alternatively, the mixtures
may be fitted to expert-segmented images, possibly with constraints
expressing prior physical knowledge, or reducing parameter dimension. Use
of cross-validated log-likelihood to select the number of components
presents no problem, because of the abundance of data. An advantage of the
use of mixtures in this setting is that they may be concisely expressed but
are also quite flexible, opening up the possibility of a relatively
problem-independent solution. In this spirit we developed a portable
container for specification of the probabilistic relations between
classifications and cbservables. The textual container lets users
(scientists) maintain, annctate, edit, and exchange definite models of
their data. These specification documents may be interpreted by

inference engines that can sample the model and compute probabilities
defined by it. In addition to these general-purpose mechanisms, we also
consider special constructs for concise description of temporal and spatial
patterns of dependence between random variables.
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SCIENTIFIC GOALS

Reliably identify structures in the photosphere

Relate these structures to irradiance changes
Features

e Sunspots
e Faculae: Can be reliably distinguished from sunspots

e (Quiet sun: everything else
Cannot now consistently identify network/supergranulation

Methods
Automatic, objective classification using statistical model
Model quantifies the uncertain relation of observables to classes

Model uses spatial information to choose labels

Falsifiable models (Popper 1958) can be checked against
the data they claim to model

General method that extends unchanged to other settings, e.g.
more observables
different number of features
explicit accounting for miscalibration; outliers
inclusion of physical knowledge (like sensor noise)




DATA SOURCES

These are rregularly-sampled time series of images

MDI on SoHO

Magnetograms and quasi-photograms having 1Kx1K pixels
Modern & consistent; no night/cloud/atmosphere difficulty
Several /day since May 1996, about 500 images/month

Analyzed May 1996 - Sep 2000; 60 GB across 25000 images
Using MDI level 1.5 magnetograms and level 2 photograms

Magneto

NPht o

Taken by SoHO/MDI in August 1996

Other Sources

Digitized films from Mt. Wilson Observatory, CA
Magnetic field and intensity images for several decades.

PSPT in Hawaii as cross-calibration
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WHY USE BOTH?

17:58 UTC on 7 September 1997

Preprocessed Magnetogram: Detail
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PROBABILISTIC IMAGE MODELS

Quantitatively describe the uncertain relation between
observables and labels in an accepted probabilistic framework

Labels x Data y

Synthesis

Observer
-‘__.—.———

Analysis

P(x) Py [x)
At each spatial position, one of K physical processes is dominant.

Observables arise depending on the dominant physical process.

Generation of observables may be viewed as adding uncertainty
(noise) to the underlying dominant process.

Goal of analysis is to invert this noisy mapping.

Variables of the Model
Index set AV of spatial coordinates s = (4, 7)

Unobservable labels x = [z4]senr & observables y = [¥s]sen
z,: small integer 1... K (i.e. ACR/Fac/QS)
Ys: real vector (i.e., the pair (magnetic field, light intensity))

Statistical model given by two distributions P(x) and P(y | x)
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MODEL SPECIFICS

Describe the two distributions P(x) and P(y | x)

1: Link to Observables
Make the link via scientist-labeled images and distribution-fitting
Alternatively, can infer automatically from data via clustering
Obtain K distributions, one for each feature class
MDI illustration: posit a (bivariate) Gaussian law

P(§,|zs = k) ~ Normal(jig, 0:l)
(QS class, k = 1: fits the SoOHO/MDI data reasonably well using
fii =0 1] and oy =0.01.)
2: Quantifying Spatial Smoothness

Typically 8 > 0 controls smoothness in the prior

P(x) = o oo (63 1z, # 2))

s~

where s ~ s’ means: site s close to site &, e.g. one pixel away

Penalty of 3 per disagreement of nearby pixels to enforce spatial
coherence of labelings

At 8 =0, penalty and spatial constraint vanish

e Objective, automatic inference possible given [y, oz, 3




INFERRING THE LABELING

Invert the noisy data the Bayesian way with familiar mazimum a
posteriori (MAP) estimate

X = argmax P(x|y)

X

Bayes rule shows P(x|y) o< P(y|x)P(x)
first factor is the traditional “likelihood function”
second is the prior enforcing spatial coherence

For normal model, algebra reveals the objective function above is

logP X|y ZHys ,uass "ﬁzl(xs 7é375’>

seN s~g!

Interpretation
First term: fidelity to data (observation close to its mean)
Second term: image smoothness (this couples the pixel labels)

Maximizing P(x |y) is a numerical problem solved in about 3
min/image on Sun workstation (360MHz).

Algorithm cycles through label pixels, refining it over many
Sweeps.
Data Models

But, the normal distribution is not adequate for all classes:
it fails standard statistical tests.
...normal model is thus falsified.

We must introduce more realistic data models P(¥| )
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ASSESSING VALIDITY

Models for observables
These are directly sensed, allowing direct model checks

Computing P(data| model) falsifies some models
e.g., normal model for class-conditional distributions
is falsified on these grounds

Models for labels
Known as ground truth and is difficult to verify

e If a scientist says it is a sunspot, it may not be a sunspot.
Difficulty with Pp = P(say sunspot | is sunspot).

e Further: Lack of physical understanding of problem means
even experts may be surprised at what is really there.
What is being modeled

Active region discovery formulated as an image segmentation
problem

Optimistic to represent photospheric attributes by a discrete class

Perhaps represent attributes as a vector x = [z1 x2 x3], where e.g.
21 1s our subjective belief that it is a sunspot

More expressive schemes possible and perhaps appropriate
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MODELING THE OBSERVABLES

Main ingredient: the three density models

Py |Q), FP(U|F), P(F;|ACR)
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These density models will dominate the image labelings

As strawman, put forward per-class normal distributions
P(§s | zs = k) ~ Normal(fig, Xx)

with d x 1 class means and d X d covariance matrices.

Simple normal distributions are too simplistic for this data:
strongly multimodal
cannot even transform to normality (e.g., with |flux])
quiet class,e.g., contains superpositions of effects
(supergranulation is discernable in scatter plots)

Three questions (with answers):
modeling (normal miztures)
fitting (mazimum likelihood via EM algorithm)
validation (cross-validation)
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USING NORMAL MIXTURES

Modeling

For sunspot especially, benefit from the flexible density model
G
p(¥;0) = Z agN(Y; Hg, Xg)
g=1

0 = {(a1, fir, ¥1) - (ae, da, Xa)}

Convex combination of gaussian bumps or normal mixture
Bump g has weight ay, centered at fi; with elliptical contours 2.
Accounts for multimodality and superpositions of effects

A very general family: take G large.

Estimation

Ask scientists to find regions of type x5 = k; estimate 6, for each

Goal: From data Y = [i1---¢"], find a density model p(¥: 6)

Method: Determine parameters by maximum-likelihood using Y:

§ = argmax log P(Y; 0) = arg max Zlogp(g'i; 9)
6 o

1=1

where p(¥; 0) is as above

Performed via EM algorithm, a popular iterative procedure for

learning parameters by maximum-likelihood.
...done once and then the model is fixed

Alternatively, can provide cumulative data over classes, and EM

will cluster vectors ¢/ into classes
clusters are extracted after the fact: unsupervised learning
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MODEL VALIDATION

Overfitting
Find 6 from Y, varying number of bumps G =1, 2, ...
fc = arg max log Ps(Y; 6)
0

As @ increases, “better” fits é(; to Y are obtained!

Overfitting phemomenon: too many parameters to fit reliably

Controlling model complexity with cross-validation

Solution: evaluate models on a separate validation data set
Hold aside test data Z = [ij* - - - /™) disjoint from Y’
Train ég from Y with maximum-likelihood as indicated
Test ég on separate data Z

Contrast test likelihood Pg(Z;0¢) with Pg(Y: 0g): the
former is an unbiased estimate of fit of 64 to true distribution

Next, generate more training/test (Y'/Z) splits to get more
estimates of goodness-of-fit

Average of these goodness-of-fit indicators shows what model
complexity the data can support

Also, can serve to test robustness of model to changes in data to
which it should be largely invariant
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LABELINGS




Photogram: 1998/01/15 11:11 UTC + 0,1,2,3,4,5 days
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Magnetogram: 1998/01/15 11:11 UTC + 0,1,2,3,4,5 days
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Labeling: 1598/01/15 11:1 UTC » C,1.2,3.4.5 cays
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CONCLUSIONS

Methods

Framework suited for a variety of labeling problems
Models are fit automatically from flexible family
Leads to falsifiable statistical model for data

Spatially, temporally uniform data is key to accurate labelings

Results

Primary dataset is 60 GB of MDI m- and p-grams over > 4 years
Stable identification of features in time

Excellent agreement between MDI and Mg c¢/w

Developed a usable inspection, annotation, and automated
labeling tool

Futures

More accurate modeling of long-term MDI imagery

Integration, comparison with instruments like PSPT, SDO, MWO
Region tracking for irradiance and other purposes

Object taxonomy by clustering

turmon®aig. jpl.nasa.gov
http://www-aig. jpl.nasa.gov/home/turmon/




