System Flight Computer

Dwight A. Geer
dwight.a.geer@jpl.nasa.gov

June 6, 2001
Europa Orbiter/X2000 Avionics
Industry Briefing

Description

- The System Flight Computer development contract with BAE SYSTEMS, Manassas
 - Two performance versions:
 - Baseline: 33 MHz on-board oscillator (EM boards delivered)
 - Enhanced: 66 MHz on-board oscillator plus additional Power PCI functionality (new effort)
 - Commercial SFC (Prototype)
 - Engineering Model (EM)
 - Flight Model (FM)
- System Flight Computer components
 - Double-sided Compact PCI card
 - RAD750 radiation hardened PowerPC 750
 - Power PCI radhard (radiation hardened) PCI bridge chip
 - Shielded Stacked SDRAM
 - RadPack Maxwell (SEI) EEPROM
 - Radhard QTECH oscillator
 - Radhard Omnirel linear regulator
- Interfaces
 - CompactPCI bus
 - UART Interface
 - Interrupts and Discretes – Programmable I/O Discretes
 - JTAG Interface

June 6, 2001
Europa Orbiter/X2000 Avionics Industry Briefing

Power PCI ASIC Description

- Power PCI provides all required on-card support functions including interfaces to:
 - PCI
 - Memory
 - CPU
 - Test equipment (UART/JTAG)

- Power PCI architecture features
 - Multiple on chip bus structure for highest throughput
 - Dedicated processor - memory bus with ECC
 - High performance processor - PCI bus with parity
 - Lower performance peripheral and test bus
 - Bit and nibble memory error correction
 - Clock generation and control (System, PCI, CPU)
 - PCI Version 2.2 master / target and central arbiter
 - Asynchronous PCI interface
 - JTAG diagnostics (master and slave capable)
 - 16550 compatible UART
 - Programmable interrupts and timers
 - Error recovery embedded micro-controller function

June 6, 2001
Key Requirements

- Exceeds SPEC95 performance benchmarks (3.2 SPECint95, 2.5 SPECfp95)
 - 6.5 SPECint95, 3.9 SPECfp95 and 240 Dhrystone 2.1 MIPS
 - Performance degradation < 20% while PCI DMA activity is at 66 MB/s
- Power conservation modes controllable by software
- 32 bit 33 MHz CompactPCI Bus Specification, PCIMG 2.0 R2.1
- > 128 MBytes main memory
- > 128 KBytes (256 KBytes actual) SUROM
- EDAC mechanism for all memory
- JTAG and built-in self-test (BIST) capability
- JPL Double-Sided CompactPCI Mechanical ICD (MICD)
- Software includes:
 - Test routines to support BIST functions executed out of SUROM or RAM
 - BSP interface functions and SFC configurable hardware drivers
 - SUROM software to initialize the SFC to a known operational state
Key Requirements

<table>
<thead>
<tr>
<th>Performance</th>
<th>Clock Rate</th>
<th>PowerPC Core (2.5v)</th>
<th>PowerPC I/F (3.3v)</th>
<th>PowerPCI</th>
<th>DRAM</th>
<th>Osc's</th>
<th>Total (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Speed</td>
<td>242 MIPS</td>
<td>132 MHz</td>
<td>6.0</td>
<td>0.3</td>
<td>1.5</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>3x Speed</td>
<td>181 MIPS</td>
<td>99 MHz</td>
<td>4.9</td>
<td>0.3</td>
<td>1.5</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>2x Speed</td>
<td>121 MIPS</td>
<td>66 MHz</td>
<td>3.8</td>
<td>0.2</td>
<td>1.5</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>High</td>
<td>60 MIPS</td>
<td>33 MHz</td>
<td>2.6</td>
<td>0.2</td>
<td>1.5</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Half</td>
<td>30 MIPS</td>
<td>17 MHz</td>
<td>2.1</td>
<td>0.1</td>
<td>1.3</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Quarter</td>
<td>15 MIPS</td>
<td>8 MHz</td>
<td>1.8</td>
<td>0.1</td>
<td>1.1</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Eighth</td>
<td>7.5 MIPS</td>
<td>4 MHz</td>
<td>1.6</td>
<td>0.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>132 MIPS</td>
<td>132 MHz</td>
<td>2.4</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>99 MIPS</td>
<td>99 MHz</td>
<td>1.9</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>66 MIPS</td>
<td>66 MHz</td>
<td>1.4</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>33 MIPS</td>
<td>33 MHz</td>
<td>0.9</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>17 MIPS</td>
<td>17 MHz</td>
<td>0.7</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>8 MIPS</td>
<td>8 MHz</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>4 MIPS</td>
<td>4 MHz</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Nap</td>
<td>132 MIPS</td>
<td>132 MHz</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Sleep</td>
<td>132 MIPS</td>
<td>132 MHz</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

SFC Mass

<table>
<thead>
<tr>
<th>Line Weight</th>
<th>Growth Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.549</td>
<td>3%</td>
</tr>
<tr>
<td>0.564 KGS</td>
<td></td>
</tr>
<tr>
<td>1.207 LBS</td>
<td>1.241 LBS</td>
</tr>
</tbody>
</table>
Picture of the first SFC EM

X2000 System Flight Computer
SFC EM S/N E003

June 6, 2001
Europa Orbiter/X2000 Avionics
Industry Briefing

Picture of the first SFC EM

X2000 System Flight Computer
SFC EM S/N E003

June 6, 2001
Key Requirements – SFC Enhancement

- Power PCI internal operation at 66 MHz (baseline is 33 MHz)
 - Reduces memory latency for cache miss
- DMA Controller with the following features:
 - Executes a linked list of DMA commands in RAM.
 - Performs transfers in all combinations of PCI and RAM access
 (RAM → PCI, PCI → RAM, PCI → PCI, RAM → RAM)
 - Generates CPU interrupts on the occurrence of certain events
 - Example: command completion, command list completion and error
 - Interrupts are maskable (defaults to masked)

<table>
<thead>
<tr>
<th>Performance</th>
<th>Clock Rate</th>
<th>PowerPC Core (2.5v)</th>
<th>PowerPC I/F (3.3v)</th>
<th>PowerPCI</th>
<th>DRAM</th>
<th>Osc's</th>
<th>Total (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Speed</td>
<td>242 MIPS</td>
<td>132 MHz</td>
<td>5.9</td>
<td>0.4</td>
<td>5.5</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>1.5x Speed</td>
<td>181 MIPS</td>
<td>99 MHz</td>
<td>4.8</td>
<td>0.3</td>
<td>4.7</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>High</td>
<td>121 MIPS</td>
<td>66 MHz</td>
<td>3.7</td>
<td>0.3</td>
<td>4.0</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Half</td>
<td>60 MIPS</td>
<td>33 MHz</td>
<td>2.6</td>
<td>0.2</td>
<td>3.2</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Quarter</td>
<td>30 MIPS</td>
<td>17 MHz</td>
<td>2.1</td>
<td>0.1</td>
<td>2.8</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Eighth</td>
<td>15 MIPS</td>
<td>8 MHz</td>
<td>1.8</td>
<td>0.1</td>
<td>2.6</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Sixteenth</td>
<td>7.5 MIPS</td>
<td>4 MHz</td>
<td>1.6</td>
<td>0.1</td>
<td>2.5</td>
<td>1.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Current Status

- PDR – September 1999
- CDR – August 2000
- Power PCI Tape Out (RIT) – June 2000
- First SFC EM (baseline) – December 2000
- RAD750 Tape Out (RIT) – February 2001
- EM QUAL Unit – June 2001
- Power PCI Tape Out (RIT-B) – August 2001
- First SFC FM (baseline RIT-B) – January 2002
- Power PCI (enhanced) Tape Out (RIT) – October 2002
- First SFC PT (enhanced) – January 2003
- First SFC EM (enhanced) – May 2003
System Flight Computer

Dwight A. Geer
dwight.a.geer@jpl.nasa.gov

June 6, 2001
Europa Orbiter/X2000 Avionics
Industry Briefing

Description

- The System Flight Computer development contract with BAE SYSTEMS, Manassas
 - Two performance versions:
 - Baseline: 33 MHz on-board oscillator (EM boards delivered)
 - Enhanced: 66 MHz on-board oscillator plus additional Power PCI functionality (new effort)
 - Commercial SFC (Prototype)
 - Engineering Model (EM)
 - Flight Model (FM)
- System Flight Computer components
 - Double-sided Compact PCI card
 - RAD750 radiation hardened PowerPC 750
 - Power PCI radhard (radiation hardened) PCI bridge chip
 - Shielded Stacked SDRAM
 - RadPack Maxwell (SEI) EEPROM
 - Radhard QTECH oscillator
 - Radhard Omnieel linear regulator
- Interfaces
 - CompactPCI bus
 - UART Interface
 - Interrupts and Discretes – Programmable I/O Discretes
 - JTAG Interface

June 6, 2001
Europa Orbiter/X2000 Avionics
Industry Briefing

Block Diagram

Flight Model Configuration

June 6, 2001
Power PCI ASIC Description

- Power PCI provides all required on-card support functions including interfaces to:
 - PCI
 - Memory
 - CPU
 - Test equipment (UART/JTAG)

- Power PCI architecture features
 - Multiple on chip bus structure for highest throughput
 - Dedicated processor - memory bus with ECC
 - High performance processor - PCI bus with parity
 - Lower performance peripheral and test bus
 - Bit and nibble memory error correction
 - Clock generation and control (System, PCI, CPU)
 - PCI Version 2.2 master / target and central arbiter
 - Asynchronous PCI interface
 - JTAG diagnostics (master and slave capable)
 - 16550 compatible UART
 - Programmable interrupts and timers
 - Error recovery embedded micro-controller function

June 6, 2001
Key Requirements

- Exceeds SPEC95 performance benchmarks (3.2 SPECint95, 2.5 SPECfp95)
 - 6.5 SPECint95, 3.9 SPECfp95 and 240 Dhrystone 2.1 MIPS
 - Performance degradation < 20% while PCI DMA activity is at 66 MB/s
- Power conservation modes controllable by software
- 32 bit 33 MHz CompactPCI Bus Specification, PCIMG 2.0 R2.1
- > 128 MBytes main memory
- > 128 KBytes (256 KBytes actual) SUROM
- EDAC mechanism for all memory
- JTAG and built-in self-test (BIST) capability
- JPL Double-Sided CompactPCI Mechanical ICD (MICD)
- Software includes:
 - Test routines to support BIST functions executed out of SUROM or RAM
 - BSP interface functions and SFC configurable hardware drivers
 - SUROM software to initialize the SFC to a known operational state
Key Requirements

<table>
<thead>
<tr>
<th>Performance</th>
<th>Clock Rate</th>
<th>PowerPC Core (2.5v)</th>
<th>PowerPC I/F (3.3v)</th>
<th>PowerPCI</th>
<th>DRAM</th>
<th>Osc's</th>
<th>Total (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Speed</td>
<td>242 MIPS</td>
<td>132 MHz</td>
<td>6.0</td>
<td>0.3</td>
<td>1.5</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>3x Speed</td>
<td>181 MIPS</td>
<td>99 MHz</td>
<td>4.9</td>
<td>0.3</td>
<td>1.5</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>2x Speed</td>
<td>121 MIPS</td>
<td>66 MHz</td>
<td>3.8</td>
<td>0.2</td>
<td>1.5</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>High</td>
<td>60 MIPS</td>
<td>33 MHz</td>
<td>2.6</td>
<td>0.2</td>
<td>1.5</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Half</td>
<td>30 MIPS</td>
<td>17 MHz</td>
<td>2.1</td>
<td>0.1</td>
<td>1.3</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Quarter</td>
<td>15 MIPS</td>
<td>8 MHz</td>
<td>1.8</td>
<td>0.1</td>
<td>1.1</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Eighth</td>
<td>7.5 MIPS</td>
<td>4 MHz</td>
<td>1.6</td>
<td>0.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>132 MIPS</td>
<td>132 MHz</td>
<td>2.4</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>99 MIPS</td>
<td>99 MHz</td>
<td>1.9</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>66 MIPS</td>
<td>66 MHz</td>
<td>1.4</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>33 MIPS</td>
<td>33 MHz</td>
<td>0.9</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>17 MIPS</td>
<td>17 MHz</td>
<td>0.7</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>8 MIPS</td>
<td>8 MHz</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Doze</td>
<td>4 MIPS</td>
<td>4 MHz</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Nap</td>
<td>132 MIPS</td>
<td>132 MHz</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Sleep</td>
<td>132 MIPS</td>
<td>132 MHz</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

SFC Mass

<table>
<thead>
<tr>
<th>Line Weight</th>
<th>Growth Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.549</td>
<td>3%</td>
</tr>
<tr>
<td>0.564 KGS</td>
<td>1.207 LBS</td>
</tr>
<tr>
<td>1.241 LBS</td>
<td></td>
</tr>
</tbody>
</table>

June 6, 2001
Picture of the first SFC EM

X2000 System Flight Computer
SFC EM S/N E003

June 6, 2001
Europa Orbiter/X2000 Avionics
Industry Briefing

Picture of the first SFC EM

June 6, 2001
Key Requirements – SFC Enhancement

- Power PCI internal operation at 66 MHz (baseline is 33 MHz)
 - Reduces memory latency for cache miss
- DMA Controller with the following features:
 - Executes a linked list of DMA commands in RAM.
 - Performs transfers in all combinations of PCI and RAM access
 (RAM → PCI, PCI → RAM, PCI → PCI, RAM → RAM)
 - Generates CPU interrupts on the occurrence of certain events
 - Example: command completion, command list completion and error
 - Interrupts are maskable (defaults to masked)

<table>
<thead>
<tr>
<th>Performance</th>
<th>Clock Rate</th>
<th>PowerPC Core (2.5v)</th>
<th>PowerPC I/F (3.3v)</th>
<th>PowerPCI</th>
<th>DRAM</th>
<th>Osc's</th>
<th>Total (Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Speed</td>
<td>242 MIPS</td>
<td>132 MHz</td>
<td>5.9</td>
<td>0.4</td>
<td>5.5</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>1.5x Speed</td>
<td>181 MIPS</td>
<td>99 MHz</td>
<td>4.8</td>
<td>0.3</td>
<td>4.7</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>High</td>
<td>121 MIPS</td>
<td>66 MHz</td>
<td>3.7</td>
<td>0.3</td>
<td>4.0</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Half</td>
<td>60 MIPS</td>
<td>33 MHz</td>
<td>2.6</td>
<td>0.2</td>
<td>3.2</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Quarter</td>
<td>30 MIPS</td>
<td>17 MHz</td>
<td>2.1</td>
<td>0.1</td>
<td>2.8</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Eighth</td>
<td>15 MIPS</td>
<td>8 MHz</td>
<td>1.8</td>
<td>0.1</td>
<td>2.6</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Sixteenth</td>
<td>7.5 MIPS</td>
<td>4 MHz</td>
<td>1.6</td>
<td>0.1</td>
<td>2.5</td>
<td>1.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Current Status

- PDR – September 1999
- CDR – August 2000
- Power PCI Tape Out (RIT) – June 2000
- First SFC EM (baseline) – December 2000
- RAD750 Tape Out (RIT) – February 2001
- EM QUAL Unit – June 2001
- Power PCI Tape Out (RIT-B) – August 2001
- First SFC FM (baseline RIT-B) – January 2002
- Power PCI (enhanced) Tape Out (RIT) – October 2002
- First SFC PT (enhanced) – January 2003
- First SFC EM (enhanced) – May 2003