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Abstract

We report on our effort to develop algorithms to de-
tect, size, and classify geological features in planetary
and asteroidal data sets. Our current work has focused
primarily on the detection of craters, which are of sci-
entific interest because they are one of the most ubiqui-
tous landforms in the solar system and they enable the
relative ages of surfaces or surface units to be deter-
mined. The algorithm uses examples provided by a sci-
entist to generate an efficient model for detecting the
target object across a continuous range of scales. Tests
on regions of the Lunar Maria (provied by Clementine)
show that the algorithm achieves an 80% probability of
detection for craters larger than four pizels in diam-
eter with a 12% false alarm rate. The algorithm has
also shown promise for detecting blocks and boulders
in the NEAR imagery of asteroid 483 Eros and lava
cones in X-SAR imagery of Earth.

1 Introduction

We report on our effort to develop algorithms to de-
tect, size, and classify geological features in planetary
and asteroidal data sets. The ever-growing volume of
data being returned by NASA spacecraft has made the
development of techniques for automatically interpret-
ing the content of image data essential. Furthermore,
it has been realized that deploying data understanding
algorithms onboard a spacecraft will create new sci-
entific opportunities that could not be achieved with
existing technology.

Our current efforts have focused primarily on the
detection of craters. This application is particularly
worthy because craters are one of the most ubiquitous
features in the solar system and are found on essen-
tially all solid-surface solar system bodies. In the ab-
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sence of direct sample returns from the surface of a
body, craters are the primary means of establishing
the age of the surface or surface units. The density
of craters can yield the relative ages of these surface
units and potentially can yield the relative ages be-
tween the surfaces of different bodies. Craters are
therefore a fundamental tool for the determination of
the geological age and history of a surface. An auto-
mated algorithm will help the scientist by eliminating
the laborious task of manually labeling craters, and
it will also provide for an objective, examinable, and
repeatable process for performing the analysis. In con-
trast, most previous studies of planetary features, and
in particular studies of crater statistics and morphol-
ogy, have been done either manually (visual inspec-
tion and marking, sometimes simply with a pencil), or
with semi-automated techniques that relieve the user
from making measurements with a ruler or tabulat-
ing statistics, but still require manual selection and
marking of the features on a display.

There are many data sets now sitting in archives
for which the cratering record has never been fully ex-
amined. Reanalysis of more than a small fraction of
these archival data would be difficult; however, as one
exception, there is an attempt underway to analyze
the Mars Viking dataset using a large, distributed set
of human volunteers, known as Clickworkers [7]. Al-
though interesting, such manual approaches do not
provide a long-term, reusable solution as each new
dataset or feature type requires a reinvestment of the
same human effort. Also, improved acquisition, stor-
age, and downlink capabilities will continue to gener-
ate ever larger data sets. A further limitation of the
manual approach is that it will not enable onboard
opportunistic science based decisions.

In contrast, we are using ideas from machine learn-
ing and computer vision to develop algorithms that
can be trained or customized by scientists to look for
particular types of features. This concept traces its



roots back to the JARtool project [1], which was an
attempt to develop a trainable tool for automatically
cataloging small volcanoes in the Magellan radar im-
agery of Venus. However, unlike the earlier JARtool
algorithm, the current algorithm can smoothly detect
features across several orders of magnitude in scale.
Rather than using domain-specific knowledge (e.g.,
craters have circular or elliptical boundaries [8, 3}),
our algorithm has no specific built-in knowledge about
craters. Instead, the algorithm trains itself for the
crater-detection problem from a set of examples that
are provided by the scientist. The algorithm uses these
training examples to derive a crater model that can
be used to detect and size craters in other images.
To handle scale in an efficient way without requiring
the user to supply an excessive number of training ex-
amples, the algorithm synthesizes virtual examples by
resampling the user-provided example(s) at different
pixel spacings.

The resulting continuously scalable detectors
(CSDs) provide a principled extension of the matched
filtering paradigm, which was developed in the early
1940’s for radar and communications problems [14].
This new algorithm can be viewed as matched fil-
tering over a continuous scale space. The advan-
tages of matched filtering (or template matching as
it is more commonly known in the computer vision
and pattern recognition literature) are well known:
the procedure is optimal for detecting a known sig-
nal in an additive white noise background and often
works well even when these conditions do not com-
pletely hold. CSDs are closely related to the steerable-
scalable-deformable filtering ideas developed by Free-
man and Adelson [5], Perona [15], and others, as well
as to the parametric feature detection work of Na-
yar, Baker, and Murase [12]. An important difference,
however, is that CSD’s are typically constructed from
a real example of the object of interest rather than
from a closed-form, analytical expression of the ob-
ject’s brightness profile. Hence, a user can interac-
tively select an example of the target object from an
image, or even draw a picture of the object using a
palette of gray values, and then construct a CSD that
can be used to find novel instances of the object over
a wide range of scales. For object classes that are not
well-represented by a single scalable template, unions
of CSD’s may be used.

2 CSD Construction
2.1 Prototemplate

Construction of a CSD begins with a prototem-
plate. Unlike the work of Nayar et al [12, 13] and
Perona {15}, we do not require an analytical expres-

sion for the pixel intensities of the object (or filter)
as a function of the spatial coordinates (z and y) and
scale parameter (o). Instead we use a “real exam-
ple” of the target object as the prototemplate. Of
course, if a sufficiently accurate analytical expression
were available, it would provide a viable means for
generating the prototemplate. However, this is not
the usual case except when dealing with very simple
parametric features such as the step edges, lines, and
corners treated in [12]. Hence, we typically generate
the prototemplate by interactively selecting and ex-
tracting an image region containing an instance of the
target object. A somewhat more refined version of
this approach is to extract multiple instances, resize
to a canonical size, and average to produce a smoothed
prototemplate with higher signal-to-noise ratio. It is
also possible to generate a prototemplate by hand-
painting on a canvas with a computer mouse and a
palette of gray values. This technique is necessary
whenever there is not an instance of the target object
available (for example, when formulating a query to
an unfamiliar image database).

2.2 Scaled family

In the next step, a template family is generated by
resampling the prototemplate at a number of different
scales. For each scale, the number of pixels in z and
y will be the same as in the prototemplate, however,
the physical distance between the pixel centers will be
different according to the scale. To avoid confusion in
terminology, we will define the scale of an example as
the ratio of pixel spacing in the prototemplate to pixel
spacing in the example. Hence, if the pixel spacing in
the prototemplate is 10 m between pixel centers and
the object spans 7 pixels, but in a resampled version
the pixel spacing is 5 m and the object spans 14 pixels,
we will say the resampled version is at scale=2. (In
other words, if the object looks twice as big in pixel
units, it is at scale 2.)

In our experiments to date, we have generated the
scaled family using one hundred linearly spaced scales
in the range from 1 to 2, i.e., a family member is syn-
thesized at scale 1.01, 1.02, 1.03, ..., 2. We have used
the general image warping procedure described in [6]
to perform the resampling, but alternative implemen-
tations should work fine. Figure 1 shows a prototem-
plate for a bowl-floored crater extracted from an im-
age of Mars and the corresponding scaled family. (The
prototemplate is the example in the upper left corner.)

2.3 Compression of the Family

Ideally we would like to use each template in the
scaled family as a matched filter to locate objects of a



Figure 1: The upper left example shows a crater pro-
totemplate selected from an image of Mars. The re-
maining examples show the family of scaled templates
constructed by resampling the prototemplate at finer
pixel spacings.

particular size; however, this is computationally in-
feasible since the number of convolutions would be
too large. Hence, we use singular value decompo-
sition (SVD) to compress the scaled family. This
technique has become commonplace in vision appli-
cations [18, 15, 1, 11, 10] and is known under various
other names, such as eigenfaces, principal components
analysis (PCA), Karhunen-Loeve. Each template in
the scaled family is normalized for DC value and con-
trast (more on this in Section 3.1), reshaped as a col-
umn vector, and stored as a column in a matrix X.
The columns are organized so that the first one cor-
responds to the smallest scale and the last one corre-
sponds to the largest scale. The number of rows in
X is just the number of pixels per template and the
number of columns is the number of scale samples in-
cluded in the family. The SVD decomposes X as the
product of three matrices:

X =UsvT (1)

where the columns of U are orthonormal, S is di-
agonal, and the columns of V are also orthonormal.
Equation 1 says that any column of X can be exactly
expressed as a linear combination of the columns of
U. The j-th column of SVT provides the set of co-
efficients with which to weight the columns of U to
generate the j-th column of X.

In many vision problems it turns out that the
columns of X can be well-approximated as a linear
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Figure 2: (a) First three basis functions obtained
through SVD of the template family shown in Fig-
ure 1. (b) Corresponding interpolating functions as
a function of a continuous scale parameter. On the
z-axis, 0 corresponds to scale = 1 and 100 coresponds
to scale = 2. The y-axis is unitless.

combination of the first &£ columns of U, where & is
much smaller than the total number of columns. The
accuracy of this approximation is determined by the
decay in the singular values (the elements on the diag-
onal of 8). For the template family shown earlier, we
have found that three basis functions provide a suffi-
ciently accurate approximation. These basis functions
(first three columns of U reshaped as chips) are shown
in Figure 2a.

In addition to the basis functions, the SVD pro-
duces a set of interpolating functions. If we define
K(-) as the i-th row of SV7 | then we can write:

X, = Y KU (2)

This expression gives the best approximation to tem-
plate family member j in the subspace spanned by
the U’s (i = 1,...,k). By passing from the discretely
sampled K;() functions to a continuous version K; (o),
we can generate members of the template family at
an arbitrary scale. (Note: the accuracy will be best if
o is such that we are interpolating between template
family members rather than extrapolating outside the
range of known family members.) Figure 2b shows the
first three interpolating functions.

3 Application of the Model
3.1 Correlation vs Scale

Suppose that we have an incoming image I and
want to compute the normalized correlation between



each patch of the image and the j-th member of the
template family, which corresponds to some scale o;.
Mathematically, we can express the correlation image
R as follows:

R,, = » Ki(o;) Qs (3)
i=1

where Q; is defined as the correlation between the i-th
basis function and the image. In words, Equation 3
says that the correlation image generated by a specific
template family member is a linear combination of the
correlation images produced by the basis functions.
More broadly, the correlation with any template fam-
ily member is a linear combination of the correlation
images produced by the basis functions; the interpo-
lating functions K;(o) provide the proper weightings.
This result is not new (see for example [15]), however,
we have included it for completeness.

To compute the normalized correlation between two
patches Y and Z, the mean of the patches must be re-
moved and the energy (or contrast or variance) of each
patch must be normalized. For convenience of nota-
tion we can think of reshaping the patches as vectors
y and z. The normalized correlation p is then given

by:
(L) ()

= y'a 4)

B
|

where y and Z are normalized versions such that
17y =0, yT§ = 1, and similarly for Z.

The members of the template family undergo this
normalization procedure before being placed in the
columns of X. The basis functions U; that result from
the SVD of X necessarily satisfy the zero-DC prop-
erty (i.e., 1TU; = 0), but to restore the unit energy
condition, we must define a new set of interpolating
functions as follows:

i) = - Q
i K2 (o)

The K interpolating functions are used in place of the
original K’s appearing in Equation 2.

From a computational perspective normalizing ev-
ery patch of the image before computing the inner
product with the basis functions (as suggested by
Equation 4) is a bad idea. Instead, we apply the basis
functions to the un-normalized image and later apply
the appropriate correction. The “fix” is to divide the
un-normalized correlations by the standard deviation

of pixel values in each image patch. The standard de-
viation can be conveniently computed with separable
kernels [17]. The separable kernel technique simply
decomposes a 2-dimensional rectangular box filter as
the outer product of two 1-dimensional filters (a row
filter of all ones and a column filter of all ones). By
convolving first with the row filter and then with the
column filter, the necessary statistics for each image
patch can be obtained with O(4+/n) operations per
pixel rather than the O(2n) required with direct 2-d
convolutions, where n is the number of pixels in the
patch.
3.2 Maximum response versus scale

In the previous subsection we saw that the nor-
malized correlation of an image and a template fam-
ily member at any scale could be obtained (approx-
imately) from the correlations of the basis functions
with the image. At a particular spatial location (z,y),
we are now interested to find the template family
member that produces the largest response value (cor-
relation) and the value of the maximum response.

Rmax($7y) é méix Ra(x’y)
k
= max Zf{i(a)-Qi(w,y) (6)
i=1

At a particular spatial location the response profile
versus scale is just a linear combination of the inter-
polating functions. It is possible to explicitly form the
response profile versus scale and search for the max-
imum value (similar to the approach used by Nayar
et al [12]). However, a slightly more efficient alter-
native is to approximate the interpolating functions
as closed-form expressions of ¢. Cubic polynomial
approximations (or piecewise combinations of cubic
polynomials) are especially useful since the zeros of
the derivative of response with respect to scale can be
obtained in closed form. In particular, the derivative is
just a quadratic polynomial (or piecewise quadratic)
in o, so the roots, which correspond to extrema in
the response, fall out as solutions of a quadratic equa-
tion. Thus, we simultaneously obtain the maximum
response versus scale and the scale that yields the
maximum.

3.3 Full Scalability

The SVD-based approach we have described so far
is useful for representing a template over a continu-
ous set of scales; however, we do not want to make
the range of scales to be covered by this technique
to be too large for two reasons: (1) the support of
the basis functions is nominally as large as the largest



lambda®?2
lambda
1

1/lambda

Figure 3: The CSD model is applied to a pyramid rep-
resentation of an image to cover orders of magnitude
in scale variation.

family member and (2) we do not expect that a low-
dimensional linear basis will be adequate for spanning
a large scale range (too many basis functions would
be needed). Manduchi and Perona [9] considered this
problem in the context of multi-orientation, multi-
scale filtering. Their solution was to apply basis filters
to different levels in a pyramidal decomposition. We
use essentially the same technique. The SVD is used
to span a smaller range of scales, typically a factor of
two in our experiments; then we apply the resulting
basis functions to a pyramid representation of the im-
age. If the spacing between pyramid levels is properly
matched to the scale-range spanned by the template
family, then the end-product is a continuously scalable
detector that smoothly covers orders of magnitude in
scale variation.

Figure 3 illustrates an image pyramid. The basic
image is at scale 1. Using the resampling algorithm
of [6] the “pyramid” can be constructed with both re-
duced size versions of the image (as in standard pyra-
mids [2]) and interpolated versions that are larger than
the original image. The interpolated pyramid levels
are useful for detecting objects that are smaller than
the prototemplate. For each spatial location where
the maximum correlation value exceeds a threshold,
a marker of the appropriate size is recorded. (The
position and size are remapped to the scale 1 image
coordinates).

3.4 Illumination Invariance

Variations in the appearance of an object due to
illumination direction must be handled in addition to
the variations due to scale. In the case of optical imag-
ing of craters, we make the assumption that the illu-
mination direction is recorded when the image is cap-
tured. The azimuth component of the sun angle can
then be removed by rotating the image (or the model).
Variations in the elevation component of the sun angle
are handled through elevation angle specific models.
For active imaging systems, such as SAR, the illumi-
nation and receiver are co-located so the problem of

illumination invariance does not occur for rotationally
symmetric objects.
3.5 Arbitration

Two factors can cause multiple hits (markers) to be
generated for a single object. Objects whose scale is
near the “seam” between two different pyramid lev-
els may be marked twice (once at each level). Also,
multiple markers may be generated at slightly shifted
spatial positions. With classical matched fitlering, this
problem is usually resolved by taking a local max over
a small spatial window to find the peak of the correla-
tion surface. For the continuously scalable case, more
sophisticated processing is required. One view is as a
competition over scale and spatial neighborhood to de-
termine the highest correlation value and the (z,y, o)
coordinates at which the best correlation occurs. We
implement this competition by grouping markers into
clusters using a single linkage algorithm [4]. Once the
markers are assigned to clusters, we simply choose the
marker with the highest correlation value as the repre-
sentative of the cluster. The metric between the mark-
ers can be a function of both the marker centers and
their scales. In the single linkage algorithm, two mark-
ers are assigned to the same cluster if their distance is
less than a threshold. This rule is applied transtitively
so that if A is close to B and B is close to C, then A4, B,
and C are all assigned to the same cluster. In studies
of cratering it is quite common for small craters to ap-
pear inside larger craters. Hence, the grouping metric
must be defined so that a large crater and any nested
smaller craters are not all grouped into the same clus-
ter. For this case, we used the following “distance”
measure:

area(A N B)
=1-
d \/max(area(A), area(B)) @
which is based on the area of overlap between the
cricles.

4 Experimental Results

In this section, we present experimental results on
an application of CSD’s to the detection of craters, as
well as some initial experiments on the detection of
other geological features.
4.1 Detection of Craters

For the crater application, a CSD was constucted
from a crater example selected from an image of Mars.
The CSD consists of three basis filters and the corre-
sponding interpolating functions, which are approxi-
mated with cubic polynomials. (The basis functions
and raw interpolating functions are shown in Fig-
ure 2.)



Figure 4: Detection of lunar craters in a Ranger 9
image. The diameter range spans more than an order
of magnitude.

The model was then applied to a novel image of
the Moon. “Raw” detections were clustered using the
area of overlap relative to the area of the larger marker
as the distance metric. The final result is shown in
Figure 4 as a set of circles overlaid on the image. (The
black +’s, T’s, and L’s are fiducial marks added by
the camera to aid in calibration and can be ignored
for our purposes.) Note that the craters in this image
span more than an order of magnitude in scale and
that the algorithm does indeed detect large and small
craters as well as nested craters. Overall, the detection
and sizing performance is quite good, however, it is
probably below that of human experts.

Figure 5 shows the result of a more recent CSD
model, which incorporates masking to focus solely on
the area hypothesized to be inside the crater. The
red circles are correct identifications made by the al-
gorithm. The black circles show the corresponding hu-
man expert labels for the craters that were detected
by the algorithm. The blue circles show true craters
(identified by the human expert) that were missed by
the algorithm. The orange circles are false alarms (re-
gions identified by the algorithm that do not corre-
spond with the human expert’s labeling).

The linear grooved features that run across the im-
age are responsbile for generating a large percentage
of the false alarms. This result is not suprising and
can be traced to the fact that the algorithm is look-
ing within a small circular window and the shading
of the groove within the mask looks very crater-like.
Of course, by looking at the surrounding context, it is
clear that these places are not true craters so this is
one area for improvement. Specifically, we will feed-

back the results of the CSD to a supervised classifi-
cation algorithm that can also look at the supporting
context to reject false alarms such as these.

A second point to note is that many of the missed
craters are at sizes less than four pixels in diameter.
The crater detection model was generated with a min-
imum size of four pixels so it is not suprising that these
smaller craters were missed. We also believe that sub-
pixel alignment problems may be producing degraded
results at the smaller sizes. (A half pixel shift of on
object that is only four pixels across may significantly
degrade the correlation.)

Figure 6 quantifies the performance of the CSD on
the Clementine image of Figure 5. The curve, which
is known as a receiver operating characteristic (ROC)
curve, shows the trade-off between detection rate and
false alarm rate as a function of an implicit threshold.
At high threshold values, the false alarm rate is lower,
but the detection rate is also lower. At lower thresh-
old values, both the detection and false alarm rates
increase. The ROC curve is computed by automat-
ically matching the algorithm output against human
ground truth. If an algorithm-generated circle and a
human-generated circle overlap sufficiently (using the
dissimilarity measure of Equation 7, a correct deci-
sion is recorded. If there is no ground truth circle
that is sufficiently overlapped with a given algorithm-
generated circle, a false alarm is recorded. The proba-
bility of detection is determined by dividing the num-
ber of correct decisions by the number of craters in
the human ground truth. The false alarm rate is ex-
pressed relative to the total number of hits produced
by the algorithm (1—precision). At a threshold of 0.7,
the algorithm successfully detects 80% of the craters,
with a 12% false alarm rate. (Of all the things the
algorithm claims to be craters, 12% are not.)

4.2 Detection of Other Features

An advantage of the learning-based approach that
we have used to derive a detector for craters is that de-
tectors for other types of geological features can be de-
veloped quickly by supplying a different set of training
examples. For example, we have adapted (re-trained)
the system to detect blocks and boulders on the sur-
face of Eros, as well as to detect lava cones near the
Lava Bed National Monument using imagery obtained
with the X-SAR instrument. The latter experiment is
in support of a New Millennium Program study phase
activity known as the Autonomous Sciencecraft Con-
stellation (ASC) [16]. ASC will use onboard planning
and science processing capabilities to reduce downlink
bandwidth and provide autonomous retargeting of fea-
tures of interest.



Figure 5: Detection of lunar craters (threshold = 0.6) on a Clementine image taken in the Lunar Maria. Red
circles are correct identifications made by the algorithm. The black circles show the corresponding human expert
labels for craters that were detected by the algorithm. Blue circles represent true craters that were missed by the
algorithm and orange circles show false alarms.
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Figure 6: Probability of detection vs false alarm rate
(craters > 4 pixels) for Clementine image shown in
Figure 5.

5 Status and Future Work

We are now approximately two-thirds through a 3-
year development program supported by the NASA
Office of Space Science Applied Information Systems
Program. The goals by year were roughly: 1) devel-
opment of the tool, 2) extensive reliability testing and
refinement, and 3) applications to real scientific data
sets and introduction to the scientific community. We
have made significant progress toward these goals, but
not without some difficulties. We have a working de-
tection tool and have tested it on a number of sam-
ple surfaces and compared the results against human
measurers. Trial data sets include Lunar Ranger and
Clementine images, Galileo images of Europa and Cal-
listo, and NEAR images of asteroid 433 Eros. Results
on the Lunar Maria and Eros are quite good; how-
ever, the complicated background of Europa and the
variability in appearance of craters on Callisto clearly
cause difficulties, which we are working to resolve. We
have also shown that the system can be adapted to (re-
trained for) other types of features; in particular, we
have demonstrated that the system can detect blocks
and boulders on the surface of Eros and lava cones on
Earth.

Directions for future algorithm development work
include handling subpixel shifts, using supervised clas-
sification techniques to reject false alarms, and enah-
ncing the CSD detectors to represent inherent varia-
tion between different instances of the same class.
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