TROPICAL PACIFIC AND INDIAN-OCEAN WARMING
DURING 1997-98 INFERRED BY ASSIMILATING
TOPEX/POSEIDON DATA INTO A NEAR-GLOBAL OGCM

Tong Lee, Benny Cheng, Dimitris Menemenlis, Ichiro Fukumori, Lee-Lueng Fu
Jet Propulsion Laboratory, California Institute of Technology
Phone: 818-354-1401. Email: tlee@pacific.jpl.nasa.gov

Sea level anomalies observed by the TOPEX/POSEIDON altimeter during 1997 and
1998, climatological mean temperature and salinity, and surface flux data are assimilated into
a parallel version of the MIT ocean general circulation model (OGCM). The model has a near-
global domain (80 deg S to 80 deg N), 1x0.3-deg grid in the tropics and 1x1-deg grid in the
extra-tropics, and 46 vertical levels (levels are 10-m thick in the upper 150 m). The adjoint
method is used to minimize model-data misfits by adjusting the initial temperature, salinity,
and surface fluxes. The assimilation significantly improves estimates of the tropical Pacific
circulation: standard deviation difference is reduced and correlation is increased relative
to TOGA-TAO data which are not used in the assimilation. Through adjustment of wind
stress, the assimilation regulates the timing and magnitude of equatorial Kelvin and Rossby
waves as well as advection to produce a more realistic thermal structure (especially in the
thermocline slope) and sea level associated with the warming both in the eastern equatorial
Pacific and western equatorial Indian Oceans. Effects of the assimilation on tropical heat
balance are quantified and dominant processes associated with the development of Pacific
and Indian-Ocean warming are discussed.