A 1.2 THz planar tripler using GaAs membrane based chips

Jean Brustom †, Alain Maestrini, D. Pukala, Suzanne Martin, Barbara Nakamura, and Imran Mehdi

SWAT
Caltech – Jet Propulsion Laboratory
†Now at ESA - ESTEC, Netherlands

Presentation to the 12th International Symposium on Space THz Technology
Feb. 15th, 2001
Introduction

- Objectives: Demonstrate supra THz planar multiplier technology.

- Rationale: provide components for space borne receivers.

- State of the Art: Planar Mixers: 2.5 THz (JPL, RAL).
 Planar Multipliers: 600 GHz (JPL).

- Status: Designed, built and tested a 1.2 THz planar tripler

- Results: 70 μW (1%) at RT, XX μW (XX%) at 120K
Technology demonstration: Frameless GaAs Membrane

Get rid of thick GaAs support frame

- Advantages:
 - Increased design flexibility: YES
 - All shapes possible: YES
 - Split waveguide block implementation possible (no frame in the way): YES

- Drawbacks:
 - Handling (use of "sacrificial frame" possible): NOT AN ISSUE

Extensive use of Beam Leads

- Advantages:
 - Simplified assembly (no soldering, chip "dropped in"): YES
 - Simplified bias scheme (no wire bonding): Current scheme not satisfactory for assembly. New one being implemented. RF & DC work.
 - Low loss, high bandwidth antennas/circuits (air dielectric): YES

- Drawbacks:
 - Fragile during handling: NOT AN ISSUE
A 1.2 THz planar tripler using GaAs membrane based chips

1.2 THz tripler using planar Schottky diodes on GaAs membrane

- Balanced tripler for odd harmonics.
- Split waveguide block.
- Simple bias scheme.
- Tunerless
- Predicted efficiency is 2%.
A 1.2 THz planar tripler using GaAs membrane based chips

Design: device optimization and diode loop

Planar Diode properties:
Epitaxial doping
concentration: $5 \times 10^{17} \text{ cm}^{-3}$
Anode size: $0.4 \times 1.3 \text{ μm}$

Diode efficiency = 10 %

Diode loop efficiency = 5 %

Air bridge structure
Analyzed at Input and output Frequency with HFSS

Input Port

Output Port
A 1.2 THz planar tripler using GaAs membrane based chips

Design: waveguide probes, bias and matching circuits

• Probes: low impedance design to match diodes. Output probe naturally matches the diodes at output freq.

• Matching circuit: none on output. 2 elements high-low on input for match and low pass.

• Bias: one air bridge launches from MIM capacitor to the mesa.
A 1.2 THz planar tripler using GaAs membrane based chips

Design
A 1.2 THz planar tripler using GaAs membrane based chips

Design: housing block and integrated horn

- Low loss E-plane split waveguide.
- In-line design.
- Picket-Potter horn with new transition from rectangular to circular waveguide make machining simple and scalable to higher freq. (2.4 THz built).
A 1.2 THz planar tripler using GaAs membrane based chips

Measurements
Performance

- No bias.
- Tuner-less.

- Designed for 10 mW input power, available only as peak power.
- 70 μW, 1.0 % max output, 3.5% 3dB BW, all solid state chain @ RT.
- XXX at 120 K (XXX %)
A 1.2 THz planar tripler using GaAs membrane based chips

Performance

• Design is autobias. Biasable chip has comparable perf. to non biased one, with optimum bias ~ 0V.

• Only nominal (0.4x1.3 um2) and smallest diode tested. Other variations (including circuit) to be tested soon.

• Measured data do not correct for atmospheric loss (may be significant around water lines).
Conclusion

• Developed and demonstrated GaAs Membrane Technology:

 • *Free standing membrane is sturdy.*

 • *New beam lead structures provide RF probes, tuning elements, mechanical support and DC bias contacts.*

 • *Increases design flexibility:*

 • *split waveguide.*

 • *bias scheme.*

 • *Integration.*

 • *Multi-diode schemes expand circuit applications*

 • *Shrunked overall circuit dimensions increase device yield/wafer.*

 • *Chips are easy to handle. Assembly is VERY reproducible.*
Conclusion (cont’d)

• Designed, built and tested a 1.2 THz planar tripler

 • Robust design concept and methodology (first try works).

 • Fully scalable (design, fab., block) to higher freq (2.4 THz underway).

• 1.2 THz tripler showed record performance

 • 70 uW, 1.2 % @ RT, XXX @ 120K.

 • Demonstrated technology for FIRST- HIFI.
Acknowledgment

- Pete Bruneau, for block fabrication, and Ray Tsang, for device assembly. The SWAT group, for overall support.

- The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.