Extreme Temperature
(-170C to +125C) Electronics
for Nanorover Operation

Michael Newell
Jet Propulsion Laboratory
California Institute of Technology

http://extremeelectronics.jpl.nasa.gov
Problem Statement

Jet Propulsion Laboratory

EXTREME
Temperature Electronics

- Goal: make electronics that control mobility operation and optical bench science gathering of in a 1.3kg, 1660 cm³ nanorover.

- Nanorover will operate on either mars or a small body asteroid.
Nanospacecraft Trends, Implications, Constraints and Conclusions
Summary of Constraints for nano S/C

- So small volume implies:
 - Need for miniaturized electronics
 - Low power availability
 - Not a lot of excess self heat generated
 - Wider temperature swings of parts of the S/C due to lower thermal mass
 - S/C temperature essentially determined by environment and external interconnects
Miniaturization of electronics circuits gives small circuits that run on very little power.

- This is a win for solving the power availability problem.
- Less power implies less excess power for heat.
- Generates a desire not to diminish the volume, mass and power gains of miniature electronics by adding heaters.
Problem of Keeping Things Warm

- **Wires**
 - On sojourner wire length was increased, diameter was decrease, and circuitous path use to reduce heat loss between internal electronics and external actuators and sensors
 - On the muses-CN rover, number of wires connecting to top solar panel was limited to about 6 wires which were made out of tungsten to reduce heat transfer
Enabling Technology: Cold Electronics

- Since nano-sciencecraft will primarily track the external temperature, being able to operate cold would allow existing components and packaging to be used.

- Cost benefits from being able to use existing flight and commercial parts.
A Possible Alternative for Keeping Heat in

- Put electronics in a thermos
- Again wires are a path for heat transfer
- Possible use of mostly /all optical interfaces
- If any electronics are going to be outside of thermos they still need ability to work cold
Rover Electronics Constraints

Jet Propulsion Laboratory

- Low mass: 180 grams.
- Low power: 2.56 watts from solar cells.
- Low volume: 226.8 cm3.
 - (12 cm x 12.6 cm x 1.7 cm).
- Large temperature range:
 - -180°C to +125°C survival range.
 - -170°C to +110°C operation range.
- Mass and volume drives the packaging to chip on board.
Passive Electronics Component Operation at Extreme Cold Temperatures (-170°C)
Passive Parts – Resistors, Capacitors, Inductors

• Resistors work great cold
 • Thermal noise goes down (surprise!!)
 • Seem to follow their temperature coefficients into the cold temperature regime, does not vary significantly

• Capacitors work cold but vary
 • Capacitance does vary as a function of temperature
 • Choice of capacitor is important

• Inductors work cold but vary
 • Inductance does vary with temperature due to changes in core permeability
Multi-layered Capacitor (MLC) Body

- Parallel plate capacitor folded in an accordion
- Each layer is considered a small parallel plate capacitor in parallel with the next layer
Capacitors Physics

Capacitance

\[C = \frac{\kappa' NA}{d} \]

\(\kappa' = \frac{e_R}{\varepsilon_0} \) is the ratio of the permittivities of dielectric material \(e_R \) and a vacuum \(e_0 \)

\(N \) is the number of layers within a multi-layer capacitor

\(A \) is the area \(A = lw \), where \(l \) is the length and \(w \) is width

\(d \) is the distance between each electrode plate
BP Capacitors

Jet Propulsion Laboratory

Average Before Cycling

- Avg 10 pF
- Avg 30 pF
- Avg 47 pF
- Avg 68 pF

Temperature (°C)

Capacitance (pF)

Averages After Cycling

- Avg 10 pF
- Avg 30 pF
- Avg 47 pF
- Avg 68 pF

Temperature (°C)

Capacitance (pF)
Active Electronics Component
Operation at Extreme Cold Temperatures (-170C and Lower)
Changes in Active Devices at Cold Temperatures

Jet Propulsion Laboratory

• Electrical parameter changes.
 • Bipolar components suffer from carrier freeze out due to \(e^{-kt} \) component in gain equations of BJTs.
 • MOSFETs gain is a function of electric field inversion due to voltage across the gate and channel mobility. The electric field is NOT a function of temperature, and mobility increases as temperature decreases.

• In MOSFETS hot carrier injection is an issue.
 • Looks like a 2 to 3 reduction in lifetime due to this.
 • This can be mitigated to some extent by geometry changes.
 • We will be running hot carrier degradation tests this summer.
MOSFET Gain Equation

• MOSFET Gain Equation:
 - \(I_{DS} = \mu_n \frac{C_{OX}}{2} \frac{W}{L} (V_{GS} - V_{TH})^2 \)

• Two parameters changing here as temp lowers:
 - Mobility, \(\mu_n \) which increases
 - Threshold voltage \(V_{TH} \) which increases also
 - Higher \(I_{DS} \) for same operating and gate voltages

• Net Gain increase as temperature decreases down to liquid nitrogen temperatures since mobility increase dominates \((V_{GS} - V_{TH})^2\) term
Mobility As a Function of Temperature

Mobility as a function of Doping and Temperature

- ND=1E14
- ND=1E15
- ND=1E16
- ND=1e17
- ND=1e18
- ND=1E19
I_{DS} Increase As a Function of Temperature

Jet Propulsion Laboratory

Graph showing the increase of I_{DS} as a function of temperature for different conditions.

- VGS=3V, T=+25C
- VGS=4V, T=+25C
- VGS=3V, T=-175C
- VGS=4V, T=-175C

Graph axes:
- Y-axis: I_{DS} (mA)
- X-axis: VDS (Volts)
CMOS, made of complementary MOSFETS inherit these cold temperature effects.

- Propagation delay decreases.
- Lower propagation delay has the possibility to cause hold time violations.
CMOS Inverter Model
Simulation of Propagation Delay on Temperature

Jet Propulsion Laboratory
Cold Temperature Digital Component Tests

- Testing of 74C04 and 74HC245 at 23°C and -193°C to see if propagation delay can be recovered by lowering the logic supply.
- Shows the Variance of CMOS logic Propagation delay when changing Voltage and Temperature
Propagation Delay
74C04 5 Volts, 23C

Jet Propulsion Laboratory

PROPOGATION DELAY: 19.7 nS
Propagation Delay
74C04 5 Volts, -193C

PROPOGATION DELAY: 11.7 nS
Propagation Delay
74C04 3.8 Volts, -193C

PROPOGATION DELAY: 20.5 nS
Cold Temperature Digital Component Analysis

- With propagation delay decreasing, hold time violations are a risk.
 - Design system so that hold time is not an issue at a system level.
 - If hold time errors occur internal to a device at cold temperature, the voltage of the device can be lowered to regain timing margin.
Hold Time Conundrum

Jet Propulsion Laboratory
Digital Component Types Tested

- Mongoose V and LSI R3000 processors
- Honeywell SRAM
- BAE SRAM
- Honeywell ASICs
- Northrup Grumman EEPROM
- Standard logic
- Various DRAMs on our prototype
Analog Component Types Tested

- CMOS/MOS multiplexors tested
 - All worked well, make before break maintained
- CMOS op-amps tested
 - CMOS op-amps with "standard" class AB output amp stages failed routinely in the -100°C range
 - A non standard national part worked great cold, but had to be shielded for radiation (8krad due to gate oxide)
- Power MOSFETs were use as analog circuit components quite effectively
The Nanorover Implementation
Constraints on the Rover Electronics

- Low Mass: 180 grams
- Low Power: 2.56 Watts from Solar Cells
- Low Volume: 226.8 cm³
 - (12 cm x 12.6 cm x 1.7 cm)
- Large Temperature range:
 - -180°C to +125°C Survival Range
 - -170°C to +110°C Operation Range
- Mass and Volume drives the packaging to chip on board.
Board Footprint

Jet Propulsion Laboratory

12.6 cm

12 cm

5.3 cm
Board Footprint

Jet Propulsion Laboratory

EXTREME
Temperature Electronics

12.6 cm

12 cm

5.3 cm
Optical Bench With Board Attach Points
Optical Bench With Board Attach Points
Side View of Boards

Jet Propulsion Laboratory

COMPUTER

ANALOG

POWER SUPPLY

MEMORY

MOTOR DRIVERS

OPTICAL BENCH
Optical Bench Relative to Body
• Operation at temperature ranges extended into the extreme cold temperature region works.
• Functionality is reliable at extreme cold temperatures
• Lifetime of active devices is limited to Hot Carrier Injection in active devices at cold temperature and is a reliability issue.
• Existing parts can be used
• The length of missions using existing parts is a function of HCI degradation and mechanical cycling fatigue mitigation.
Questions
Additional Slides
Impedance

$Z = \sqrt{\left(R_S^2 + (X_C - X_L)^2 \right)}$

$Z =$ Total Impedance
$R_S =$ Series Resistance
$X_C =$ Capacitance Reactance
$f =$ Frequency
$C =$ Capacitance
$X_L =$ Inductive Reactance
$L =$ Inductance

$X_C = \frac{1}{2\pi f C}$

$X_L = 2\pi f L$
Effects of Frequency

Jet Propulsion Laboratory

22 μF BX Cap

Impedance or Resistance (Ω)

Frequency (kHz)

X: 1 MHz
- Z: -170°C
- Z: -150°C
- Z: -100°C
- Z: -50°C
- Z: 0°C
- Z: 23°C
- Z: 50°C
- Z: 100°C
- Z: 115°C
- Z: 125°C
MOSFET Diagram

MOSFET
No Voltages Applied

MOSFET
Gate Voltage Applied
No Drain-Source Voltage Applied

MOSFET
Gate Voltage Applied
Drain-Source Voltage Applied

http://extremeelectronics
Temperature and Voltage Variations of a 70C04

Update series titles

Propagation Delay Versus Voltage

Propagation Delay

Temp

Series 1
Series 2
Series 3
Summary

• Variation of the dielectric constant κ' with temperature describes the linear decline in capacitance in cold temperatures for ceramic capacitors.
• Temperature cycling has no effect ($p > .05$).
Trends

Jet Propulsion Laboratory

ELECTRICAL AND MECHANICAL COMPONENTS ARE GETTING EASY TO MINITURIZE

IMPLIES

ABILITY TO BUILD SMALLER SPACECRAFT AND SCIENCECRAFT
Trends

Jet Propulsion Laboratory

Enables mission opportunities otherwise not possible

Smaller S/C implies possibility for multiple S/C to increase coverage / reliability
Implications

Jet Propulsion Laboratory

- SMALLER S/C
 IMPLIES
 LOWER VOLUME

- LOWER VOLUME
 IMPLIES
 LOWER SURFACE AREA

- LOWER VOLUME
 IMPLIES
 LOWER MASS
 IMPLIES
 LOWER THERMAL MASS
Second Level Implications

Jet Propulsion Laboratory

LOWER THERMAL MASS \implies \text{LARGER THERMAL SWINGS OF S/C}

LOWER SURFACE AREA \implies \text{LESS SOLAR RADIATION HITTING THE S/C}
Implications Ad Nausea

Jet Propulsion Laboratory

LESS SOLAR RADIATION HITTING THE S/C

LESS ELECTRICAL ENERGY AVAILABLE FROM SOLAR CELLS

LESS ELECTRICAL ENERGY AVAILABLE FROM SOLAR CELLS

LESS POWER AVAILABLE FOR ELECTRONICS

IMPLIES

IMPLIES
Implications Ad Nausea

Jet Propulsion Laboratory

LOWER VOLUME

ELECTRONICS COMPONENTS ARE CLOSER TO EACH OTHER

IMPLIES

ELECTRONICS COMPONENTS ARE CLOSER TO EACH OTHER

IMPLIES

NOISE ISSUES BECOME HARDER TO ISOLATE

IMPLIES

RTHs AND RTGs WILL IRRADIATE ELECTRONICS OR CAUSE HUGE MASS INCREASE
Discussion Overview

Jet Propulsion Laboratory

- Micro and Nano science craft trends and implications and constraints
 - Discussion of temperature effects
 - In most cases everything gets cold
 - One possible paradigm: design electronics to work at cold temperatures