
An Evolvable Hardware Platform based on DSP and FPTA

M. I. Feeuson*, A. Stoics, D. Keymeulen, R. Zebulum, V. Duong
*fergieQjpl.nasa.gov

Center for Integrated Space Microsystems
Jet Propulsion Laboratory

Califomia Institute of Technology
Pasadena CA 91 109, USA

Abstract

The field of evolvable hardware has been fat-
ing a consistent problem since it’s inception,
that the time taken to find an evolved solution
is often limited because of time taken in the
simulation of the hardware. We describe in
this paper the rationale and design of an evolv-
able hardware (EHW) platform based on the
use of a stand-alone processor (DSP) and a
Field Programmable Transistor Array (FPTA).
We demonstrate an improvement of 3 to 4 or-
ders of magnitude over state-of-the-art sim-
ulation techniques implemented on a super-
SPARC processor.

1 Introduction

The field of evolvable hardware (EHW) has been fat-
ing a consistent problem since its inception; that the time
taken to find a solution often imposes limits on the size of
the final circuit because the evaluation time is too great.
This stems from the fact that until recently all algorithms
have been running simulations of the hardware, rather
than tesing on hardware directly. The JPL EHW research
team has made an attempt to mitigate this by developing
an integrated circuit called a field programmable transis-
tor array (FPTA). Evaluating candidate solutions on this
hardware vastly reduces the evaluation time by removing
the circuit simulation time. In order to efficiently interact
with this new device, a dedicated processor is provided
to both perform the evolutionary algorithm, evaluate the
performance and perform the analog UO with the chip.

This document provides technical rationale and expla-
nation for the design of the evolutionary algorithm im-
plemented for the stand-alone DSP platform. The first
section will provide an overview of the system and the
system architecture to provide context for the more de-
tailed explanations to follow. The next section will dis-
cuss the implementation of the genetic algorithm. The
following sections will in tum discuss the downloading
of individuals to the FPTA and the methodology behind
the stimuludresponse cycle.

1.1 Related Work

Several other projects related to evolutionary electronics
have been documented in the literature, most notably is
the work by

Several systems have been developed to perform Genetic
Algorithms (GAS) on FPGAs.

We know of no other group doing research into the area
of evolutionary electronics using a stand-alone processor
and an evolutionary hardware platform.

2 System Overview

The goal of the system is to discover a configuration for
the FPTA to perform a function specified as an input to
the algorithm. This goal is achieved with the use of a ge-
netic algorithm, which operates on a population of indi-
vidual configuration candidates. The term ’chromosome’
is used to represent one of the configuration bit-stream
candidates and a population is made up of individual
chromosomes. The GA operates by testing each of the
chromosomes, also called individuals, on the FPTA and

http://fergieQjpl.nasa.gov

evaluting its performance or fitness. When all individuals
have been evaluated a new population is formed by using
genetic operators on the old population. Genetic opera-
tors include such functions as crossover and mutation.
This process of generating and evaluating populations
continues until a solution is found or it is determined that
the search is not likely to converge to a solution.

2.1 System Architecture

The system consists of a PC connected through JTAG
to an Innovative Integration SBC67 stand-alone DSP
board[2] which is then connected to the FPTA designed
at JPL[l]. The SBC67 has a Texas Instruments (TI)
TMS320C6701 floating-point processor with 128KB in-
ternal SRAM and 16MB of external SRAM. It also
has two add-on modules connected through a proprietery
OMNIBUS interface, a SERVO-16 providing 16 analog
input and output with 1Qbits of precision and simulta-
neous sampling at 100kSample/sec and a DIG-32 for 32
additional digital UO operating at 7.5Mhz.[3]

The evolutionary algorithms are developed on the PC us-
ing the TI Code Composer environment. The compiled
code is then downloaded to the DSP via a JTAG con-
nection. The JTAG connection is used subsequently to
monitor and control the algorithm pending development
of a host application which can communicate more effi-
ciently with the DSP via USB I .

The evolutionary algorithm is executed on the DSP and
communicates with the FPTA digital interface through
both the dedicated 32-bit interface on the SBC67 as well
as the DIG-32 Omnibus module. The DSP system can
be seen in figure 1. As shown in the figure, there are two
paths from the DSP to the FPTA, the digital path along
which the candidate configurations are downloaded and
an analog path which is used when stimulating the FPTA
and recording the response for evaluation on the DSP.

2.2 Software Architecture

The software implementing the genetic algorithm is de-
signed around a protocol called DSPBIOS designed by
TI. DSPBIOS is a realtime kernel which allows task

'Innovative Integration is working hard on providing USB
drivers for Windows 2000.

Figure 1 : The DSP EHW platform showing DSP with
associated UO modules and the FPTA

scheduling and synchronization as well as configuration
of the software architecture and advanced debugging fea-
tures. The task scheduling ability is used to configure
software as well as hardware interrupts. These inter-
rupt routines can interract in a multi-tasking environment
with the use of several levels of priority. Configuration of
the processor and memory mapping for linking compiled
code is as simple as specifying what memory segment to
use for each 'section' of code. This configuration inter-
face is used extensively.

In addition to configuration, DSPBIOS allows debug-
ging of the program running on the DSP by transferring
register and memory contents to the host PC while the
processor is temporarily halted.

The evolutionary program developed to run on this plat-
form is called gal and is broken into two main tasks,
main and SupervisorTask. The main function is in-
voked by the task manager at DSP initialization. Some
initialization is performed in main and when it exits the
task manager schedules SupervisorTask to run. Super-

/ \
Chromosome mJ C genes

Gene 5 words

C Number of genes to use (how much of the chip to uti-
lize)

P, Crossover probability

P, Mutation probability

P, Elite percentage to save

Figure 2: The structure of the population is shown as a
collection of individuals. Each individual has a fitness
and configuration data. The configuration data is broken
into genes and further subdivided into five 16-bit words
which correspond to the 80 configurable bits for each cell
of the FPTA.

visorTask is the main routine for performing the GA.

3 Genetic Algorithm

As stated above, the GA basically iterates over a genome
consisting of candidate configuation, making modifi-
cations between subsequent generations. The genome
structure is shown graphically in figure 2 and is a popu-
lation P of N chromosomes. Each chromosome contains
a fitness value, and a set of genes corresponding to phys-
ical cell structures on the FPTA. Each gene consists of 80

configuration bits, which are split into five 16-bit words.

The genetic algorithm employed in version 1.0 of the
evolutionary code is described in pseudo-code below.

Inputs:

t , sample time

R(t,) the current response of the chip

W(t,) the desired response of the chip

S(t,) a stimulus to use

n the number of samples

P the population

N the population size

Ft the target fitness

outputs:

FO the fitness of best individual for each generation

X (C) the final chromosome corresponding to the solu-
tion (chip configuration)

Initialize (P, N)

do

for(i = 0 ; N) {

download P(i)

stimulate the circuit S(t,)

evaluate the response W(t ,)

1

FO =Sort (P)

Select elite individuals(P)

two-point-crossover(P)

mutation(P)

}until (Fo 5 Ft)

Sort: The sort function is implemented as the standard
quicksort algorithm, sorting to low to high values of fit-
ness. Since the population is implemented as an array of
pointers, the memory overhead for small populations is
not prohibitively expensive.

Crossover: The crossover fhction selects some per-
centage of the individuals and for those individuals se-
lects two bit indices and swaps the sections between
those two indices between two individuals. The selection
of the two individuals to cross over is based on fitness.
This is genera1y known as the wheel method because it
normalizes the sum of all selection probabilities to 1 and
then places each individual into a range of probability
between 0 and 1, with the more fit individuals getting a

larger fraction of the available probability space. A ran-
dom real number is then chosen between 0 and 1 and
the corresponding individual is chosen. This allows that
more fit individuals get selected for crossover more of-
ten.

The actual crossover of two individuals is done by con-
sidering the two individuals as a configuration bitstreams
and by selecting a start and a stop index (two-point
crossover) and by swapping the bits from the two indi-
viduals. No consideration is given to gene structure dur-
ing this operation.

Mutation: The mutation function essentially loops a
number of times corresponding to P, x N and on each
pass chooses an index into the configuration bitstream
and flips it. This does not enforce that the same bit
doesn't get flipped twice, but in doing so the function
runs in O(n) time rather than O(n2).

3.1 Programming

The FPTA uses a synchronous programming inter-
face with control signals CLEAR, RESET, ST, WR,
DATA[IS:O] and ADDR[8:O] and a clock input CLK.
The interface is synchronized on CLK which must be
synchronized with the other control signals.

The programming fbnction for chromosome i follows
this procedure:

/ * Reset the configuration logic * /

Raise the CLEAR line

Lower the RESET line

Cycle CLK

/ * Output ADDR/DATA pairs for

programming * /

€or (n=O; n<C; n++){

for (word=O; word<5; word++) {

DATA = pop[i] .gene[n] .geneData[word]

ADDR = n x wwd

Raise ST and WR

Assert DATA and ADDR lines

Cycle CLK

Lower the ST and WR lines

Cycle the CLK

1

1

In order to minimize the time taken to download a chro-
mosome hand-coded assembly language has been writ-
ten to access the memory-mapped UO for the DIO which
eliminates layers of system driver function calls.

3.2 Methodology of the stimuludresponse cycle

Each individual in the population is evaluated in a stimu-
ludresponse cycle performed as part of the GA. The cy-
cle consists of a waveform of some specified function
W(t,) being input to the FPTA and the output of the
chip R(t,) being sampled n times and recorded as the re-
sponse to be analyzed under the fitness criteria. This cy-
cle is performed with the use of the SERVO-16 module
in an interrupt driven mode. The method used to stim-
ulate the circuit is derived from the architecture of the
SERVO-16 and it's FIFO memory structures. There are
two FIFO memories, one for input and one for output,
as seen in figure 1, which are 32 bits wide and 256 en-
tries deep. The 32 bits in each FIFO location are filled by
two 16-bit samples, either input or output, an implication
of this is that inputs and outputs are enabled in contigu-
ous pairs (O:l, 2:3, etc.). The SERVO-16 control logic
samples all enabled ADC pairs and updates all enabled
DAC pairs at the same time, ts, at some rate, Rs. The in-
putdoutputs are multiplexed t o / h m the respecive FIFOs
during the intervening sampling period. When an ADC
pair is sampled, the lower numbered input is mapped to
the low order 16-bits and the higher to the higher order
16 bits of the FIFO. If more than one pair are enabled
the lower numbered pair is written to the FIFO first, fol-
lowed by the next higher number, and so on. If the FIFO
fills up then the next and subsequent samples are lost.
When reading the ADC FIFO, if there are no entries in
the FIFO, the last entry is read repeatedly. Similarly, if
too many words are written to the DAC, the last samples
are lost and if there are no entries in the FIFO, the last
entry is output multiple times.

Interaction between the SERVO-I6 and the DSP is ini-
tiated either when the DSP writesheads data to/from the
SERVO-16 or when the SERVO-16 issues an interrupt
to the processor. This is because the DSP does not have
access to the amount of data stored in the FIFOs and
the only way to know the status of the FIFOs is to ei-
ther reset the whole board or receive an interrupt from
the SERVO-16. Interrupts are issued by the SERVO-16
based upon the number of entries in the one or both of the
FIFOs based on one of three conditions, ADC-FIFO-HI,
DAC-FIFO-LO or the logical OR of the two. The algo-
rithm is currently written so that an interrupt occurs on
DAC-FIFO-LO, which triggers when there are less than
FIFO-THRESHOLD (currently 40) samples left in the
DAC FIFO. When the interrupt occurs the interrupt ser-
vice routine analog-isr is scheduled by the task man-
ager and performs the FIFO updates. Since there are only
256 entries in the FIFO, a problem occurs when wave-
forms greater than 216 are empolyed. In this case there
is a special section of code which writes and reads seg-
ments of the waveforms to the DAC and from the ADC

A time optimization is made by analyzing the R(t,) of
one individual during the time the processor is waiting
for the stimuludresponse cycle for the next individual to
complete.The cycle time is determined by the type of in-
put, s(&).

Downloading by Segnwd I
I I 7000

Figure 3: Showing Download segments, note that the
minimum ts is lops.

Implications to the code: The analog-isr hnction is
mapped to interrupt 4 in the configuration database file,
gal. cdb. The value of FIFO-THRESHOLD is set to
40.

1 5 -

1 -

0 5 -

Figure 4:

4 Example Experiment

To show how the GA can be applied with this system
can be demonstrated by a simple search for a configu-
ration which implements a half-wave rectifier. In this
case we choose the inputs to the algorithm as follows:
C = 2, N = 100, S(t) = sin(t), Ft = 4500, n =
50, t , = lops, P, = 0.2, P,,, = 0.04, P, = 0.7, and

F = Z { R(t,) - S(t,) for (t, < 4 2)
R(t,) - V max /2 otherwise

t.=O

where V,, is the peak voltage of the input sine wave.

E V 0 l - m

1
4 5

1 5

7

0 5

Figure 5:

5 Discussion gram is loaded in internal ram (PRAM), but increases
to 594,~~s if placed in external RAM (SDRAM) .

5.1 Representation of the configuration bistream

The current representation of the configuration bitstream
and subsequent implementations of the Crossover and
Mutation functions does not consider that certain groups
of bits only have a limited number of useful configura-
tions. For instance, if we consider a group of 4 bits and
enumerate the 16 different combinations we might dis-
cover that 1 1 of them appear to be indistinguishable. In
that case we can reduce the search space by only allow-
ing 6 different combinations of those 4 bits. The bio-
logical equivalent of the useful combinations is called an
allele. Reducing the search space by including these al-
leles would most likely greatly improve the performance
of the algorithm.

The performance of the algorithm is measured not only
by the number of generations before convergence, but
since one of the goals of this project is to provide fast
evaluation, the evaluation time of the algorithm is also a
metric of interest.

5.2 Code placement

The DSPBIOS configuration tool is used to designate
where the linker can locate code segments. There are
128KB of internal SRAM on the processor which can be
split into two sections, Internal Program RAM (PRAM)
and Internal Data RAM (DRAM). In addition, there are
16ME3 of external SDRAM, see figure 6. The default
is to allow only program code to be stored in PRAM,
code or data to be stored in IDRAM and only data to be
stored in SDRAM. However, when the code becomes too
large to fit into the available internal RAM, we move sec-
tions to SDRAM. This impacts the speed ofthe algorithm
because accesses to SDRAM take two clock cycles ver-
sus only one for internal RAM. In order to minimize the
amount of internal memory used, a trade-off is made to
place the main program (. text) into internal memory
and placing large arrays such as populationu and new-
Populationu into the external SDRAM memory. The
impact of these decisions directly affects the evaluation
time of the algorithm, for instance, the FPTA program-
ming cycle can take as little as 540,~~s when the pro-

): SP I

ACWSS

takes 2
dodc
cydes -

exiemal

Figure 6: A graphical representation of the memory map.
The 128kB internal RAM is divided into two segments,
Program and Data memory, the external memory can be
used for either.

6 Conclusion

We have shown that by using a stand-alone DSP and an
FPTA we can gain by 3 to 4 orders of magnitude in evo-
lution time (experiment time) over state-of-the-art evolu-
tion done using simulation. We have also demonstrated
that code-optimizations such as hand-coded assembly in-
structions and careful dadcode placement can have a
significant effect on the performance of the algorithm.

Acknowlegmen t

The research described in this paper was performed
at the Center for Integrated Space Microsystems, Jet
Propulsion Laboratory, California Institute of Technol-
ogy and was sponsored by the National Aeronautics and
Space Administration and Defense Advanced Research
Projects Agency (DARPA).

References

[13 A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T.
Daud, and A. Thakoor, “Reconfigurable VLSI Ar-
chitectures for Evolvable Hardware: from Exper-
imental Field Programmable Transistor Arrays to
Evolution-Oriented Chips”, IEEE Transactions on

VLSI Systems, Special Issue on Reconfigurable and
Adaptive VLSI Systems, February 2001.

[2] Innovative Integration model SBC6x stand-alone
DSP board, 805.520.3300, www.innovative-
dsp.com

[3] OMNIBUS User’s Manual Rev 1.12, p144.

