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Abstract 

The field of evolvable hardware has been fat- 
ing a consistent problem since it’s inception, 
that the time taken to find an evolved solution 
is often limited because of time taken in the 
simulation of the hardware. We describe in 
this paper the rationale and design of an evolv- 
able hardware (EHW) platform based on the 
use of a stand-alone processor (DSP) and a 
Field Programmable Transistor Array (FPTA). 
We demonstrate an improvement of 3 to 4 or- 
ders of magnitude over state-of-the-art sim- 
ulation techniques implemented on a super- 
SPARC processor. 

1 Introduction 

The field of evolvable hardware (EHW) has been fat- 
ing a consistent problem since its inception; that the time 
taken to find a solution often imposes limits on the size of 
the final circuit because the evaluation time is too great. 
This stems from the fact that until recently all algorithms 
have been running simulations of the hardware, rather 
than tesing on hardware directly. The JPL EHW research 
team has made an attempt to mitigate this by developing 
an integrated circuit called a field programmable transis- 
tor array (FPTA). Evaluating candidate solutions on this 
hardware vastly reduces the evaluation time by removing 
the circuit simulation time. In order to efficiently interact 
with this new device, a dedicated processor is provided 
to both perform the evolutionary algorithm, evaluate the 
performance and perform the analog UO with the chip. 

This document provides technical rationale and expla- 
nation for the design of the evolutionary algorithm im- 
plemented for the stand-alone DSP platform. The first 
section will provide an overview of the system and the 
system architecture to provide context for the more de- 
tailed explanations to follow. The next section will dis- 
cuss the implementation of the genetic algorithm. The 
following sections will in tum discuss the downloading 
of individuals to the FPTA and the methodology behind 
the stimuludresponse cycle. 

1.1 Related Work 

Several other projects related to evolutionary electronics 
have been documented in the literature, most notably is 
the work by 

Several systems have been developed to perform Genetic 
Algorithms (GAS) on FPGAs. 

We know of no other group doing research into the area 
of evolutionary electronics using a stand-alone processor 
and an evolutionary hardware platform. 

2 System Overview 

The goal of the system is to discover a configuration for 
the FPTA to perform a function specified as an input to 
the algorithm. This goal is achieved with the use of a ge- 
netic algorithm, which operates on a population of indi- 
vidual configuration candidates. The term ’chromosome’ 
is used to represent one of the configuration bit-stream 
candidates and a population is made up of individual 
chromosomes. The GA operates by testing each of the 
chromosomes, also called individuals, on the FPTA and 
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evaluting its performance or fitness. When all individuals 
have been evaluated a new population is formed by using 
genetic operators on the old population. Genetic opera- 
tors include such functions as crossover and mutation. 
This process of generating and evaluating populations 
continues until a solution is found or it is determined that 
the search is not likely to converge to a solution. 

2.1 System Architecture 

The system consists of a PC connected through JTAG 
to an Innovative Integration SBC67 stand-alone DSP 
board[2] which is then connected to the FPTA designed 
at JPL[l]. The SBC67 has a Texas Instruments (TI) 
TMS320C6701 floating-point processor with 128KB in- 
ternal SRAM and 16MB of external SRAM. It also 
has two add-on modules connected through a proprietery 
OMNIBUS interface, a SERVO-16 providing 16 analog 
input and output with 1Qbits of precision and simulta- 
neous sampling at 100kSample/sec and a DIG-32 for 32 
additional digital UO operating at 7.5Mhz.[3] 

The evolutionary algorithms are developed on the PC us- 
ing the TI Code Composer environment. The compiled 
code is then downloaded to the DSP via a JTAG con- 
nection. The JTAG connection is used subsequently to 
monitor and control the algorithm pending development 
of a host application which can communicate more effi- 
ciently with the DSP via USB I .  

The evolutionary algorithm is executed on the DSP and 
communicates with the FPTA digital interface through 
both the dedicated 32-bit interface on the SBC67 as well 
as the DIG-32 Omnibus module. The DSP system can 
be seen in figure 1. As shown in the figure, there are two 
paths from the DSP to the FPTA, the digital path along 
which the candidate configurations are downloaded and 
an analog path which is used when stimulating the FPTA 
and recording the response for evaluation on the DSP. 

2.2 Software Architecture 

The software implementing the genetic algorithm is de- 
signed around a protocol called DSPBIOS designed by 
TI. DSPBIOS is a realtime kernel which allows task 

'Innovative Integration is working hard on providing USB 
drivers for Windows 2000. 

Figure 1 :  The DSP EHW platform showing DSP with 
associated UO modules and the FPTA 

scheduling and synchronization as well as configuration 
of the software architecture and advanced debugging fea- 
tures. The task scheduling ability is used to configure 
software as well as hardware interrupts. These inter- 
rupt routines can interract in a multi-tasking environment 
with the use of several levels of priority. Configuration of 
the processor and memory mapping for linking compiled 
code is as simple as specifying what memory segment to 
use for each 'section' of code. This configuration inter- 
face is used extensively. 

In addition to configuration, DSPBIOS allows debug- 
ging of the program running on the DSP by transferring 
register and memory contents to the host PC while the 
processor is temporarily halted. 

The evolutionary program developed to run on this plat- 
form is called gal and is broken into two main tasks, 
main and SupervisorTask. The main function is in- 
voked by the task manager at DSP initialization. Some 
initialization is performed in main and when it exits the 
task manager schedules SupervisorTask to run. Super- 
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Chromosome mJ C genes 

Gene 5 words 

C Number of genes to use (how much of the chip to uti- 
lize) 

P, Crossover probability 

P, Mutation probability 

P, Elite percentage to save 

Figure 2: The structure of the population is shown as a 
collection of individuals. Each individual has a fitness 
and configuration data. The configuration data is broken 
into genes and further subdivided into five 16-bit words 
which correspond to the 80 configurable bits for each cell 
of the FPTA. 

visorTask is the main routine for performing the GA. 

3 Genetic Algorithm 

As stated above, the GA basically iterates over a genome 
consisting of candidate configuation, making modifi- 
cations between subsequent generations. The genome 
structure is shown graphically in figure 2 and is a popu- 
lation P of N chromosomes. Each chromosome contains 
a fitness value, and a set of genes corresponding to phys- 
ical cell structures on the FPTA. Each gene consists of 80 

configuration bits, which are split into five 16-bit words. 

The genetic algorithm employed in version 1.0 of the 
evolutionary code is described in pseudo-code below. 

Inputs: 

t ,  sample time 

R(t,) the current response of the chip 

W(t,) the desired response of the chip 

S(t,) a stimulus to use 

n the number of samples 

P the population 

N the population size 

Ft the target fitness 

outputs: 

FO the fitness of best individual for each generation 

X ( C )  the final chromosome corresponding to the solu- 
tion (chip configuration) 

Initialize (P, N )  

do 

for(i = 0 ; N )  { 

download P(i) 

stimulate the circuit S(t,) 

evaluate the response W(t , )  

1 

FO =Sort (P) 

Select elite individuals(P) 

two-point-crossover(P) 

mutation(P) 

}until (Fo 5 Ft) 

Sort: The sort function is implemented as the standard 
quicksort algorithm, sorting to low to high values of fit- 
ness. Since the population is implemented as an array of 
pointers, the memory overhead for small populations is 
not prohibitively expensive. 

Crossover: The crossover fhction selects some per- 
centage of the individuals and for those individuals se- 
lects two bit indices and swaps the sections between 
those two indices between two individuals. The selection 
of the two individuals to cross over is based on fitness. 
This is genera1y known as the wheel method because it 
normalizes the sum of all selection probabilities to 1 and 
then places each individual into a range of probability 
between 0 and 1, with the more fit individuals getting a 



larger fraction of the available probability space. A ran- 
dom real number is then chosen between 0 and 1 and 
the corresponding individual is chosen. This allows that 
more fit individuals get selected for crossover more of- 
ten. 

The actual crossover of two individuals is done by con- 
sidering the two individuals as a configuration bitstreams 
and by selecting a start and a stop index (two-point 
crossover) and by swapping the bits from the two indi- 
viduals. No consideration is given to gene structure dur- 
ing this operation. 

Mutation: The mutation function essentially loops a 
number of times corresponding to P, x N and on each 
pass chooses an index into the configuration bitstream 
and flips it. This does not enforce that the same bit 
doesn't get flipped twice, but in doing so the function 
runs in O(n) time rather than O(n2). 

3.1 Programming 

The FPTA uses a synchronous programming inter- 
face with control signals CLEAR, RESET, ST, WR, 
DATA[IS:O] and ADDR[8:O] and a clock input CLK. 
The interface is synchronized on CLK which must be 
synchronized with the other control signals. 

The programming fbnction for chromosome i follows 
this procedure: 

/ *  Reset the configuration logic * /  

Raise the CLEAR line 

Lower the RESET line 

Cycle CLK 

/ *  Output ADDR/DATA pairs for 

programming * /  

€or (n=O; n<C; n++){ 

for (word=O; word<5; word++) { 

DATA = pop[i] .gene[n] .geneData[word] 

ADDR = n x wwd 

Raise ST and WR 

Assert DATA and ADDR lines 

Cycle CLK 

Lower the ST and WR lines 

Cycle the CLK 

1 

1 

In order to minimize the time taken to download a chro- 
mosome hand-coded assembly language has been writ- 
ten to access the memory-mapped UO for the DIO which 
eliminates layers of system driver function calls. 

3.2 Methodology of the stimuludresponse cycle 

Each individual in the population is evaluated in a stimu- 
ludresponse cycle performed as part of the GA. The cy- 
cle consists of a waveform of some specified function 
W(t,) being input to the FPTA and the output of the 
chip R(t,) being sampled n times and recorded as the re- 
sponse to be analyzed under the fitness criteria. This cy- 
cle is performed with the use of the SERVO-16 module 
in an interrupt driven mode. The method used to stim- 
ulate the circuit is derived from the architecture of the 
SERVO-16 and it's FIFO memory structures. There are 
two FIFO memories, one for input and one for output, 
as seen in figure 1, which are 32 bits wide and 256 en- 
tries deep. The 32 bits in each FIFO location are filled by 
two 16-bit samples, either input or output, an implication 
of this is that inputs and outputs are enabled in contigu- 
ous pairs (O:l, 2:3, etc.). The SERVO-16 control logic 
samples all enabled ADC pairs and updates all enabled 
DAC pairs at the same time, ts, at some rate, Rs. The in- 
putdoutputs are multiplexed t o / h m  the respecive FIFOs 
during the intervening sampling period. When an ADC 
pair is sampled, the lower numbered input is mapped to 
the low order 16-bits and the higher to the higher order 
16 bits of the FIFO. If more than one pair are enabled 
the lower numbered pair is written to the FIFO first, fol- 
lowed by the next higher number, and so on. If the FIFO 
fills up then the next and subsequent samples are lost. 
When reading the ADC FIFO, if there are no entries in 
the FIFO, the last entry is read repeatedly. Similarly, if 
too many words are written to the DAC, the last samples 
are lost and if there are no entries in the FIFO, the last 
entry is output multiple times. 



Interaction between the SERVO-I6 and the DSP is ini- 
tiated either when the DSP writesheads data to/from the 
SERVO-16 or when the SERVO-16 issues an interrupt 
to the processor. This is because the DSP does not have 
access to the amount of data stored in the FIFOs and 
the only way to know the status of the FIFOs is to ei- 
ther reset the whole board or receive an interrupt from 
the SERVO-16. Interrupts are issued by the SERVO-16 
based upon the number of entries in the one or both of the 
FIFOs based on one of three conditions, ADC-FIFO-HI, 
DAC-FIFO-LO or the logical OR of the two. The algo- 
rithm is currently written so that an interrupt occurs on 
DAC-FIFO-LO, which triggers when there are less than 
FIFO-THRESHOLD (currently 40) samples left in the 
DAC FIFO. When the interrupt occurs the interrupt ser- 
vice routine analog-isr is scheduled by the task man- 
ager and performs the FIFO updates. Since there are only 
256 entries in the FIFO, a problem occurs when wave- 
forms greater than 216 are empolyed. In this case there 
is a special section of code which writes and reads seg- 
ments of the waveforms to the DAC and from the ADC 

A time optimization is made by analyzing the R(t,) of 
one individual during the time the processor is waiting 
for the stimuludresponse cycle for the next individual to 
complete.The cycle time is determined by the type of in- 
put, s(&). 

Downloading by Segnwd I 
I I 7000 

Figure 3: Showing Download segments, note that the 
minimum ts  is lops. 

Implications to the code: The analog-isr hnction is 
mapped to interrupt 4 in the configuration database file, 
gal. cdb. The value of FIFO-THRESHOLD is set to 
40. 
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Figure 4: 

4 Example Experiment 

To show how the GA can be applied with this system 
can be demonstrated by a simple search for a configu- 
ration which implements a half-wave rectifier. In this 
case we choose the inputs to the algorithm as follows: 
C = 2, N = 100, S(t)  = sin(t), Ft = 4500, n = 
50, t ,  = lops,  P, = 0.2, P,,, = 0.04, P, = 0.7, and 

F = Z {  R(t,) - S(t,) for (t, < 4 2 )  
R(t,) - V max /2 otherwise 

t.=O 

where V,, is the peak voltage of the input sine wave. 

E V 0 l - m  

1 
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Figure 5:  



5 Discussion gram is loaded in internal ram (PRAM), but increases 
to 594,~~s if placed in external RAM (SDRAM) . 

5.1 Representation of the configuration bistream 

The current representation of the configuration bitstream 
and subsequent implementations of the Crossover and 
Mutation functions does not consider that certain groups 
of bits only have a limited number of useful configura- 
tions. For instance, if we consider a group of 4 bits and 
enumerate the 16 different combinations we might dis- 
cover that 1 1  of them appear to be indistinguishable. In 
that case we can reduce the search space by only allow- 
ing 6 different combinations of those 4 bits. The bio- 
logical equivalent of the useful combinations is called an 
allele. Reducing the search space by including these al- 
leles would most likely greatly improve the performance 
of the algorithm. 

The performance of the algorithm is measured not only 
by the number of generations before convergence, but 
since one of the goals of this project is to provide fast 
evaluation, the evaluation time of the algorithm is also a 
metric of interest. 

5.2 Code placement 

The DSPBIOS configuration tool is used to designate 
where the linker can locate code segments. There are 
128KB of internal SRAM on the processor which can be 
split into two sections, Internal Program RAM (PRAM) 
and Internal Data RAM (DRAM). In addition, there are 
16ME3 of external SDRAM, see figure 6. The default 
is to allow only program code to be stored in PRAM, 
code or data to be stored in IDRAM and only data to be 
stored in SDRAM. However, when the code becomes too 
large to fit into the available internal RAM, we move sec- 
tions to SDRAM. This impacts the speed ofthe algorithm 
because accesses to SDRAM take two clock cycles ver- 
sus only one for internal RAM. In order to minimize the 
amount of internal memory used, a trade-off is made to 
place the main program (. text) into internal memory 
and placing large arrays such as populationu and new- 
Populationu into the external SDRAM memory. The 
impact of these decisions directly affects the evaluation 
time of the algorithm, for instance, the FPTA program- 
ming cycle can take as little as 540,~~s when the pro- 
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Figure 6: A graphical representation of the memory map. 
The 128kB internal RAM is divided into two segments, 
Program and Data memory, the external memory can be 
used for either. 

6 Conclusion 

We have shown that by using a stand-alone DSP and an 
FPTA we can gain by 3 to 4 orders of magnitude in evo- 
lution time (experiment time) over state-of-the-art evolu- 
tion done using simulation. We have also demonstrated 
that code-optimizations such as hand-coded assembly in- 
structions and careful dadcode placement can have a 
significant effect on the performance of the algorithm. 
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