
Anytime Interval-Valued Outputs for Kernel Machines:
Fast Support Vector Machine Classification via Distance Geometry

Dennis DeCoste DECOSTE@AIG. JPL.NASA. GOV

Jet Propulsion Laboratory / California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Abstract
Classifying M examples using a support vec-
tor machine containing L support vectors tra-
ditionally requires exactly M . L kernel com-
putations. We introduce a computational ge-
ometry method for which classification cost
becomes roughly proportional to the diffi-
culty of each example (e.g. distance from the
discriminant hyperplane). It produces ex-
actly the same classifications, while typically
requiring much (e.g. 10 times) fewer kernel
computations than Ma L. Related 5educed
set” methods (e.g. (Burges, 1996; Scholkopf
et al., 1999; Scholkopf et al., 1998)) simi-
larly lower the effective L, but provide nei-
ther proportionality with difficulty nor guar-
anteed preservation of classifications.

1. Introduction
Support vector machines (SVMs) and other kernel
methods have shown much recent promise (Scholkopf
& Smola, 2002). However, wide-spread use remains
hindered, largely, by query-time costs often much
higher than others, such as decision trees, neural net-
works, and nearest-neighbors using indexing trees.

1.1 The Problem

Classifying a query example involves L kernel evalua-
tions (e.g. dot products), one with each of the L sup-
port vectors (SVs). In practice, L is typically a large
fraction (e.g. 5% - 50%) of the number (e) of training
examples. For example, an SVM has recently achieved
the lowest error rates (DeCoste & Scholkopf, 2002) on
the well-known benchmark MNIST digit recognition
task, but its query-time is much slower than the previ-
ous best (a neural network), due to many SVs for each
digit recognizer (around 20,000).

Particularly troubling is that traditional SVM classifi-
cation costs are identical for each query example, even

for “easy” examples that other methods (e.g. tree-
based nearest-neighbors) can classify quickly.

This paper introduces a computational geometry
method which directly addresses this problem, reduc-
ing the number of kernel evaluations needed to classify
a query example (by as much as a factor of L under
favorable conditions). So that the central idea of our
approach is not lost in the mathematical details domi-
nating this paper, we summarize the main idea below.

1.2 The Solution: The Main Idea

An SVM defines a discriminant hyperplane in (kernel)
feature space. Any hyperplane can be defined by any
two points (call them P and N) that are: eqi-distant
from any point on the hyperplane, on opposite sides,
and connected by a line orthogonal to the hyperplane.
For any query point (Q), SVM classification determines
9’s side of the hyperplane by checking whether Q is
closer to P (positive) or to N (negative). As this paper
shows, traditional computation of the SVM output for
Q is equivalent to finding the exact Euclidean distances
from Q to P (i.e. d Q p) and to N (d Q N) , but this is
typically expensive (being proportional to number of
SVs in input space that define the two points P and
N in kernel feature space). More specifically, we show
that the output for Q is proportional to d$N-d$p.

For faster classification, this paper develops an efficient
method to compute bounds on d iN-dZQp, using only a
subset of (IC) SVs. This involves k + 3 points in the
kernel feature space: IC SVs (SI . . . Sk), N, P, and 9. In
Euclidean geometry, any k + 3 points can be exactly
embedded in k + 2 dimensions if all (k + 3)2 distances
among those points are known. All distances not in-
volving Q (Le. among all Si,P,N) are precomputed once.
At query time we compute the distances between 9
and the IC Si , but we refrain from the expensive com-
putations of d Q p and d Q N . We carefully set up the
embedding procedure such that dQp and dQN being
unknown leads to only 3 unknown embedding coordi-
nates, all for 9 (Qs,Qy,Qz). It turns out that q is fur-

ther constrained to fall on the surface of a sphere with
computable radius R (i.e. Q x 2 + Qy2 + Q z 2 = R2). By
solving variables Q5, Qy, and Qz (in an efficient closed
form) for the extrema of the equation for &QN-&Qp, we
find min and max bounds on the SVM output.

1.3 Incremental Anytime Classification

We achieve efficient anytime classification by comput-
ing one new distance (d Q a) at each step k and incre-
mentally tightening the bounds on d$N-d”Qp from step
&l accordingly. From each new dQsk we compute one
new embedding coordinate (Qw), as the embedding
space grows from k + 1 to k + 2 dimensions between
steps k - 1 and k. Our bounds monotonically converge
toward the exact SVM output as steps proceed, since
the uncertainty (i.e. R2) shrinks by Qw2 at each step.
The embeddings of the Si, P, and N are all precom-
puted and all 9’s coordinates except Q x , Qy, and Q z
persist to the next step. For each new step we re-solve
for Qx,Qy,Qz to find (tighter) extrema of d”QN-GP.
Once the bounding interval is clearly on one side of
zero, we know the classification (“positive” or “neg-
ative”) for 9 that the original SVM would produce.
Geometrically, the 3D sphere of uncertainty in 9’s lo-
cation is initially (at step k = 1) large and cross-
sected by the SVM’s discriminant hyperplane, and
then monotonically shrinks (and its center drifts with
respect to the hyperplane’s embedding) as k increases,
until the sphere is completely on one side.

By ordering the sequence SI, SZ, . . . by “informative-
ness” (using a form of eigenvector analysis), the k
needed to classify each Q becomes roughly proportional
to inherent difficulty (e.g. distance to the hyperplane).

1.4 Roadmap

The rest of this paper essentially works out the details
of the above idea, introducing four key concepts: why
we focus on &QN-d&p (Section 2) , how we embed from
distances (Section 3), how we efficiently bound d$N-
d“Qp (Section 4), and how we generate good sequences
(Section 5) . We then discuss related work (Section S),
explore empirical comparisons (Section 7), and sum-
marize significance and future work (Section 8).

2. SVM Binary Classifier
This section summaries essential SVM terminology
and then shows that SVM outputs are proportional
to d“QN-&Qp, which is fundamental to our approach.

Given an e-by-d data matrix (X) , an e-by-1 target la-
bels vector (y) , a kernel function (K) , and a regulariza-

tion scalar parameter (C), training a binary SVM clas-
sifier traditionally consists of the following Quadratic
Programming (QP) dual formulation:

minimize: C:,j,, aiajyiyjK(Xi,xj) - ai

subject to: 0 5 5 C , (Yiyi = 0 ,

where is the number of training examples and y i is
the label (+1 for positive example, -1 for negative) for
the i-th training example (xi) .

The kernel implicitly projects any two examples from
their d-dimensional vectors in input space (xi and xj)
into some (possibly infinite) feature space vector $(xi)
and returns their dot product in that feature space:

Kij E K(x i , ~ j) 4(xi) .4(~j), (1)
By not explicitly computing the coordinates of the
projected vectors, kernels use large non-linear feature
spaces while avoiding the curse of dimensionality.

Popular kernels (with parameters a, p , 0) are:
d linear: K(u , W) = ZL. w SE u i ~ i ,

polynomial: K (u , v) = (u w + a)P,

normalized: K(u ,w) = K(u ,21)K(u ,21) -~K(~ ,~) -3 .
RBF: ~ (u , v) = e x p (w ,) ,

2.1 SVM Outputs: Standard Formulation

The SVM classification, F (x) , given any example x
and the vector a (of length e) determined by the above
optimization, is traditionally computed as:
F(x)=sign(G(x)), G(z)= aiyiK(x,xi)-b. (2)

W f O
Let SV+ (S V -) denote the set of positive (negative)
support vector examples (for which 0 < ai 5 C) . Sim-
ilarly, define corresponding “in-bounds” subsets I N +
and I N - , for which 0 < ai < C.

2.2 Kernel Distances

The (Euclidean) distance between examples xi and xj
in the feature space of the kernel is, by definition:

For any two kernel points U,V defined from sets (V,V)
of input space (d-dim) vectors and weight vectors P,P:

U=C A4(ui) , V=C Pi#<vi), db=I(U-V((2 (4)
U i E U ViEV

defines kernel distance, computable from kernels as:

i , j i,j i , j

(5)
’Where 2-norm defined as 11u-~11’ (u . ~ - ~ u . v + v ~ v) .
’Bias b is chosen midway between values of G (without

the -b term) over zi E IN’ and values of G over zi E I N - .

2.3 SVM Outputs: Via Kernel Distances

An SVM defines a linear discriminant hyperplane in
kernel feature space. Any hyperplane can be defined
as all points equi-distant from two points such that
the hyperplane is orthogonal to the line connecting
those two points. Two special points defining the SVM
hyperplane, in terms of a and SV from training, are:

. K , j = 0 if j 2 i
v. w . - - Jd? 2 , l -v? 2 , l -v? 1,2 - . . . -&,jwl i f j = i - 1

In practice, normalizing a+ and a- to each sum to 1
is useful. Using the SVM constraint E:=, a iy i = 0
(i.e. Ci a+ = Cj ai) , normalization is simply:

SVM classification output F(z) can be computed via
the following alternative definition of G(z):

(8)
1 C

G(z) = 5 [g(z) s - - 3 - b ,
S

where Q = $(z) is the point in kernel space to which
given query example z (implicitly) projects,

c = aiajK(zi,zj) - aiajK(zi ,zj) (10)
xi ,xjESV- z; ,xj ESV+

is a constant (precomputed before normalizing alphas),
and s is the normalization factor from (7).

To verify (8) , compare restatements of (2):

XiESV+ x ; € S V -

3. Embedding from Distances
This section simply states our straight-forward general
embedding procedure. The next section uses this to
embed P, N and other points from high-dimensional
kernel space, in which kernel distances are computable
(from (5)), into low-dimensional subspaces, in order

3This ensures that neither P nor N are outside the convex
hull of the examples of their respective classes, helps keep
distances smaller, and improves numeric stability. After
normalization, P and N are the closest points from the two
convex hulls (Bennett & Bredensteiner, 2000).

to efficiently infer sufficient bounds on d"Q-d"Qp. We
selected these specific equations to support the most
efficient incremental embedding as dimension grows.

Given all k2 distances (d i , j) among any k points
(XI . . . xk), one can always embed them into k - 1
dimensions. The next section exploits the upper-
triangular form of our embedding matrix V (Table 1).

1
2
3
4

k - 1

Table 1. Embedding matrix V.
x1 x2 x s x4 x5 ' . ' xk

Using distance equations of the form:

d:j = (K,I - V J , ~) ~ + * . * + (K,k-l - & , k - ~) ~ , (12)
we compute V via the equations of Table 2.

Table 2. Embedding equations.

I I ' I

4. Computing Bounded Outputs
This section focuses on the heart of our approach:
bounding g(z). Given bounds gL(z) 5 g(z) 5 gH(Z)
for query z, one bounds G(z) and F(z) (via (2) , (8)):

where G L (x) 5 G(z) 5 G H (~) . When FL=FH, we
know the SVM's classification of x (i.e. "+" or "-").
Bounding g(z) involves three stages:

Table 3. k + 3 point embedding matrix at step I C .
s1 * ’ * s k - 1 sk

- - - - - -
A B N P Q

V E ~ - 2
 WE^-1
x ~ k
y z k + l
z ~ k + 2

4.1 Stage 1: embed k SVs, N, P (pre-query)

Given k SVs (S I ,..., Sk), N, and P, we precompute
(once, before any queries) all distances between those
k + 2 points (using (5)) and their embedding into k + 1
dimensions (using the procedure of Section 3).

We discuss how the k SVs are selected in Section 5.

4.2 Stage 2: embed x into Q (query-time)

Similarly, at query-time we embed x by computing
(via (3)) the k distances between z and each of the
SVs (SI, . . . , Sk). We reapply the procedure of Sec-
tion 3, with the embedding dimension now extended
by 1 (to account for the one new point 9). All Si,N,
and P points retain their old embeddings (with zeros
for their one new (k+2)-th coordinate).

4.3 Stage 3: bound g(x) (closed-form optimize)

Table 3 illustrates the embedding matrix resulting
from stages 1 and 2. As shown, we introduce labels
“w,x,y,z” for the final four coordinates (k-1, . . . , k+2).

Three coordinates for Q (Qx,Qy,Qx) are unknown, be-
cause their embedding equations rely on the two ex-
pensive distances (dQN and d Q p) that we wish to avoid
computing. However, they are constrained by the em-
bedding equation for case “j=i-l” for K, j in Table 2:

Qz = J62Qs1 - Qf - . . . - Q$ - Q: - 4;.

Reformulating:

Q: + Q; + Q: = R ~ , (15)

lRz = Gs, - Qf - .. . - Q t . 1 (16)

This means that 9’s location uncertainty is restricted
to a 3D sphere of radius €2. The min and m a bounds
of g(x) occur at the two poles of this sphere, with the
polar axis being the sphere’s diameter line which is
orthogonal to the SVM’s hyperplane in our embedding.

To bound g(z), we first rewrite g(x) in terms of
Qx,Qy ,Qt via the definition of Euclidean distances:

9, (17) g(X) = d$N - &QP = g- - 9’ =

To find bounds, we simply need to -find the values
(Qx*,Qy*,Qz*) which give the extrema of g. We do
this by setting the derivative of g with respect to each
variable to zero, as follows.

Since only Qx,Qy, and Qz can vary, all derivatives of
g have the following form:

6g- = 6 [(Q: - 2 N X Q X + 0% + 021 (20)

(21) Sg+ = 6 [(Q: - 2 P X Q X + Q; - 2PUQV + Q:]
69 = Sg- - Sg+ 1 6 [2(Nx - P,) Qz - 2Py Q,] (22)

Plug Qy = sign(Qy) dR2 - Qz2 - Q x 2 (from (15)) into
(22):

&I 6 -
SQx SQx [2 (Nx-Px) Qx - 2 Pg sign (Q) (R2 - Q - Q xz) 41

For & = 0, (23) gives:

Px-Nx = Py sign(Qy) (R2-Qz2-Qx2)-i Qx (24)

Squaring both sides of (24) and solving for Qx yields:

With Qx* fixed, similarly reuse (22),(15) to find Qz*:

69 6 -
SQz SQz [2(Nz-Px)Q, - 2 Py sign(Q y) (R2 - QZ2 -Qx2) 41

(26) * = 0 = 2Py sign(Qy) (R2-Qz2-QX2)-~ Qz (27)

Combin-
SQZ

Clearly, (27) holds exactly when Q,* = 0.
ing with (25) and (15) yields:

(28)
Finally, plugging the four combinations of the signs of
Qx* and Qy. into the equation for g(z) (is . (17)-(19))
tells us the min (gL(z)) and max (gH(x)) bounds.

4Which is not surprising, since Q z 2 terms cancel in (17)
and so extrema occur when the quantity of R is distributed
(via (15)) among all terms involving only Qz and Qy.

4.4 Incremental Refinement of Bounds

To provide efficient anytime bounding, we proceed in
steps (k = 1 , . . . , L) incrementally updating or pre-
computing quantities (if not involving s) whenever
possible. At each step I C , we compute one new dis-
tance (dQsk , using (3)). All coordinates for Si, P, N for
step k are precomputed and we need only update a
single coordinate (Qw = VQ,,-,) when going to step
k , via: QW = 2 2 B w [Bz + d$A - d”QB + (Q 1 -

- (Q1-A1)2 + . . . + (Q V - &) 2 - (QV-AU)2].

We incrementally update R2 (with R;,) = d2Qs1) via:

incrementally update g (with gw(a) = 0) using:

gUJ(k) = g W (k - 1) (Qw - NuJ)’ - (Qw - PuJ)~, (30)

and compute new extrema via:

g* (x) = gw (k) + (Qz *-Nz) - (Qz *-pz) + Q

4.5 Complexity Analysis

Despite a fair amount of mathematical detail, the com-
putation required per query-time step is typically only
a little more than a kernel computation.

The only costs which are not 0(1) per step k are com-

After k steps, the cumulative cost (per query) would
be O(d . k + $ k 2) , whereas traditional SVM ouputs
cost O(d.L). Thus, if step k > min(L, max(d, a))
occurs for a query before FL = FH, it becomes advis-
able to drop out and classify that query with the full
SVM. Fortunately, empirical evidence (e g Section 7)
suggests that for many queries and data sets this is
seldom required. Limiting steps to that threshold also
keeps precomputed space cost below O(max(d2, d.L)).
The complexity seems particularly well-suited for large
L > d, as is common in large SVM applications.

2
- (Qp-Py)2

(31)

puting dQsk (O(d)) and QUJ (o(k-2)).

4.6 Probabilities

Our computational geometry approach provides a
promising basis for obtaining the probability p+ (p-)
at any step k that the full SVM will classify Q as pos-
itive (negative). Assuming that Q is equally likely to
be anywhere on the surface area of the sphere that our
method restricts it to, p+ (p-) is essentially the sur-
face area of the “spherical cap” which is on the P (N)

5T0 minimize overhead per step, we employ various cod-
ing tricks, including computing and checking bounds only
every few (e.g. 10) steps. Good task-specific skip sizes can
be pre-determined by trials over training examples.

side of the discriminant hyperplane divided by the to-
tal surface area, which is known to be a linear relation
(Beyer, 1987). Specifically:

Section 7 gives evidence that (32) can give useful
approximations, seemingly much better than random
guessing whenever FL = FH is not yet true. However,
further research is required to understand exactly un-
der what conditions the assumption of queries project-
ing uniformly over the sphere surface is actually rea-
sonable. We suspect that the promising performance
of (32) in our experiments to date arises from sequence
Si orderings such as Section 5, putting first those SVs
capturing the most variance in the kernel matrix.

5. Finding Good Sequences (S i)

The main focus of this paper is on introducing our
efficient G(x) bounding mechanism. However, demon-
strating its effectiveness requires some means for find-
ing useful Si sequences. We have found that Sparse
Greedy Matrix Approximation (SGMA) (Smola &
Scholkopf, 2000) suffices for this purpose.

SGMA provides a form of column (basis function) se-
lection, via greedy eigenvector analysis. Given L d-
dimensional vectors (e.g. SVs in our case) and a de-
sired subset size k , SGMA efficiently determines which
k of those L candidate columns gives a partial L-by-k
kernel matrix which best approximates the full L-by-L
matrix. In our application, this results in an (approxi-
mately) ordered sequence of the k most “informative”
SVs (roughly orthogonal in kernel feature space).

Since SGMA does not consider the distribution of the
future query set, nor our true cost function (Le. the
number of steps k required to achieve FL = F H) , de-
veloping even better Si sequence generators is likely to
yield even better classification speedups, and thus is a
very worthy future research direction.

6. Related Work
Our approach is reminiscent of recent distance geome-
try methods to find molecular structures from atomic
distances (e.g. (Yoon et al., 2000)). However, they
are designed for 3D embeddings and distribute uncer-
tainty among all points. In contrast, we optimize for
our special interest in quantity d2QN-d$p per se.

‘Specifically, we use “Algorithm 10.1” in (Scholkopf &
Smola, 2002), including their trick to limit to 59 candidates
at each greedy step (with high probability of near-optimal
results), yet only a constant slower than random ordering.

Our method also shares similarities with multi-
dimensional scaling (MDS) (Duda & Hart, 1973) which
finds low-dimensional embeddings roughly faithful to
known distances among all points. However, all our
embeddings are exactly faithful to the given distances,
except for 9's coordinates Qx, Qv, and Qz. Our analog
to MDS's "stress" cost puts all approximation error in
the single quantity d$N-d$P and finds its bounding
extrema, whereas MDS would tend to find its mean.

6.1 Special Cases Subsumed by Our Approach

For the very special case of a linear kernel, it is well-
known that classification requires a single dot-product
with a single d-dimensional vector w:

G(x) = w .Z - b, (33)
which can be precomputed from all the SVs as follows:

w = w+ -w-, w+ =E aixi, 20- =E @ X i . (34)
XiESV+ XiESV-

As shown in Section 7, our approach exploits such
"weight folding" , if w+ and w- are explicitly included
in the Si sequence. The key advantage is that a non-
linear SVM which happens to give almost-linear dis-
criminants in input space can put these weight vec-
tors early in its Si sequence, often classifying nearly
as quickly as a linear SVM that uses (33).

As Section 7 also shows, the speedups due to exact
simplification methods (Downs et al., 2001), in which
the L-by-L kernel matrix has rank less than L, essen-
tially falls out as a special case as well, due to our use
of SGMA SV ordering.

6.2 Reduced Set Methods

High classification costs arise from large sets SV+ and
SV-. Using two points @,E) approximating P,N with
much smaller sets of d-dimensional vectors can lower
cost proportionally. Let

ZiEZ+ ZiEZ- ZiEZ

(35)
Whereas we find bounds GL(x) 5 G(z) 5 GH(z) ,
reduced set methods (e.g. (Burges, 1996; Scholkopf
et al., 1999; Scholkopf et al., 1998; Romdhani et al.,
2001)) employ approximations to give estimates:

G(z) M ZE(X) = ,@K(x, zi)- ~ ; K (z , zi) -b
"iEZ+ Zi EZ-

(36)
'Specifically, for a non-linear SVM, we first train a lin-

ear SVM and use its folded wi and w- as the first points
(SI,&) in the sequence for bounding non-linear SVMs.

ZiEZ XiESV

(37)
Reduced set methods essentially find p+ , Z+ minimiz-
ingd'.. = llP-F11' p-, 2- minimizing 8- = llN-6/lz,
or ,B, 2 minimizing d2 - 1 (S -SI (', via costly nonlinear
global optimization. Given fixed 2, (Scholkopf et al.,
1999) shows that direct inversion optimizes p:

PP NN

SS -

p = (K y K"" a, (38)

where K" is a matrix with elements K$ = d (z i) . $ (z j)

and K"" has K z = $ (z i) .$(zj), Vzi E Z,Vzj E SV.

Although never explored in previous reduced set work,
reduced set output estimations Z(x) could be naively
bounded as well, using gt(z) = (dq6 - d -)' - (d - +
dpi;)2 andgH(x) = (d -+d -)"(d --dpp)', based
on triangular inequality constraints among N,G,q and
among P,F,q, to infer bounds GI,(x) and GH(x) us-
ing our equations (13) and (14). However, very small
approximation errors (e.g. d - and dN6) would be PP
necessary to get FL (z) = FH (z).

We could embed just those two approximation points
(e.g. S1 = P, 5'2 = N, k=2), giving a simple five-
point special-case embedding. In that case, our any-
time method would achieve the best possible bounds
on G(x) , regardless of approximation errors per se. It
would take advantage of any favorable geometric ar-
rangement among the five points, not depending on
how far they are from each other per se (e.g. as naive
triangular inequalities bounds would).

However, we have found that using many simple em-
bedding points Si (each with pi = 1) performs better
than using fewer complex embedding points such as
and 6 (Le. each defined in terms of many vectors zi
and Pi's) Nevertheless, the idea of at least some of the
Si in our embedding point sequence being defined in
terms of multiple zi vectors (and/or non-uniform pi's)
seems worthy of future research.

NN QP

q N NN QP

A A

7. Experiments
We checked our approach on two UCI datasets (Blake
& Merz, 1998): Sonar (to test relatively high d (high
kernel costs)) and Haberman (to contrast with related
experiments (Downs et al., 2001)). We also report
MISR cloud classification results motivating us. We
confirmed G t (z) 5 G(x) 5 GH(x) always held.
~

'See http: //uwu-misr. j p l . nasa. gov/.
'All SVMs trained with SMO (Platt, 1999). Bounded

and exact classification used the same efficient (MATLAB)
matrix operations on the same Sun 450Mhz UltraGO.

Table 4. Results summary.

23
24

. ,
k min,max 1 3, 1111 2, 121 3, 3021 Iifl k mean,median 26.2, 19.5 4.5, 4 109.2, 69.5
w/o w+,w- :
k min,max 1,110 1, 10 1, 184
k mean,median 28.1, 23 4.5, 5 134.9, 133

test data: (M) 43 126 10000

w/o w+,w-
k min,max 4, 24

8.0 18.9

Table 4 summarizes some of our results. Rows labelled
21-22 indicate the min, max, and average steps k re-
quired for FL = FH using all training data as queries.
Rows 23-24 report the same for when w+,w- (recall
Equation 34) are not used as S1,Sz. Rows 31-34 sim-
ilarly report both cases for a second (test) dataset.
For the small Sonar and Haberman, this second set is
the non-SV training examples, demonstrating that ex-
amples farther from the discriminant hyperplane often
require much smaller k. Our Haberman result betters
(Downs et al., 2001)’s, whose exactly-simplified SVM
needed 18 SVs: our mean steps needed is 4.5 (row 22).

Rows 41-43 report speedups of our bounding approach
over exact SVM computations for the test sets, both in
terms of time ratios and of average k versus numbers of
SVs (L) , confirming that our current implementation
overhead per step is a small constant (about 2). lo

Rows 51-54 indicate that our bounds also speedup ker-
nel Fisher discriminant (KFD) classifiers. l1

“We duplicated the small UCI test sets by a factor of
10,000 to get stable time measurements.

“We trained as in (Mika et al., 2001)), but interpreted
all resulting negative (positive) a’s as defining our N (P)
points (for which all at are positive). Speeding up KFDs
is especially useful, since they seldom have any zero cy’s.

t r

-2 .E* ,
0 20 40 60 80 100

step (k)
Figure 1 . G(z) vs min k giving FL(z) = F H (z) (Sonar).

- - . geo error-until-sure (FL=FH) - P,N approxs (optimal betas)

0)
C .-
$10-2
a
a 0 20 40 60 80 100

Figure 2. Error vs k for guessing schemes (Sonar).
step (k)

Figure 1 demonstrates “proportionality to difficulty”
for Sonar (rows 21-22). This scatterplot shows that
query x with SVM output G (x) far from zero requires
less work. For training data, -1 5 G (x) 5 1 iff x is a
SV; so, max(k)=21 for non-SVs (row 31) can be seen
from this scatterplot. The proportion of queries for
which FL=FH by any step k can also be roughly seen.

Figure 2 contrasts alternative ways to guess classifica-
tions, earlier than our bounds strictly warrant. “Er-
ror” here means with respect to classifications F (x) ,
not training targets. The (top) dashed plot (“FL =
FH”) gives the worst-case baseline: each x guessing
wrong until FL(x) = F H (~) . The “geo sphere-based”
plot uses our p+,p- ((32)): guessing “positive” (“neg-
ative”) if p+ > .5 (p- > .5). The “P,N approx” plot uses
reduced set approximations, to estimate E- ((37)) and
guess (sign(E$x))). For each step, = {SI,. . . , S k }

(first k SGMA sequence SVs) and (38) gives p. l2

Both “P,N approx” and “geo sphere-based” : start bet-
ter than random guessing (78 and 72 errors respec-
tively at k = l) , hit zero error at k=74, and perform
similarly in between. l3 The rapid drop in “P,N ap-
prox” error is consistent with other guessing perfor-
mances of reduced sets (e.g. (Romdhani et al., 2001)).
However, our p+,p- guessing drops steadily (1 error by
k=50, none after k=74), whereas reduced sets clearly
act more eratic. This gives evidence that our bounds
are good not only for preventing any errors but also as
the basis for guessing that is competitive with alterna-
tives not guaranteeing preservation of classifications.

“We find bias b for each k same as before (Section 2.1),
except using E instead of G (but same I N + and I N -) .

13Note the log scale for improved distinguishability.

S

8. Conclusions Acknowledgements
Dominic Mazzoni, Mike Turmon, Becky Castano, and
Michael Burl provided helpful feedback. This research
was carried out by the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under contract with the
National Aeronautics and Space Administration.

References
Bennett, K. P., & Bredensteiner, E. J. (2000). Duality

and geometry in SVM classifiers. Proceedings, 17th Intl.
Conf. on Machine Learning.

Beyer, W. (1987). CRC handbook of mathematical sciences,
6th ed. CRC Press.

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.

Burges, C. (1996). Simplified support vector decision rules.
13th Intl. Conf. on Machine Learning.

Burges, C., & Scholkopf, B. (1997). Improving the accuracy
and speed of support vector machines. NIPS.

DeCoste, D., & Scholkopf, B. (2002). Training invariance
SVMs. Machine Learning, 46.

Downs, T., Gates, K., & Masters, A. (2001). Exact simpli-
fication of support vector solutions. Journal of Machine
Learning Research (JMLR), 2, 293-297.

Duda, R. O., & Hart, P. E. (1973). Pattern classification
and scene analysis. New York: Wiley.

Mika, S., Ratsch, G., & Muller, K.-R. (2001). A mathe-
matical programming approach to the kernel fisher al-
gorithm. NIPS 13.

Platt, J. (1999). Using sparseness and analytic QP to speed
training of support vector machines. NIPS.

Romdhani, S., Torr, P., Scholkopf, B., & Blake, A. (2001).
Computationally efficient face detection. International
Conference on Computer Vision.

Scholkopf, B., Knirsch, P., Smola, A., & Burges, C. (1998).
Fast approximation of support vector kernel expansions,
and an interpretation of clustering as approximation in
feature spaces. Mustererkennung 1998 - 20. DAGM-
Symposium. Springer.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller,
K.-R., Ratsch, G., & Smola, A. (1999). Input space vs.
feature space in kernel-based methods. IEEE ’Dansac-
tions on Neural Networks, 10.

Scholkopf, B., & Smola, A. (2002). Learning with kernels.
Cambridge, MA: MIT Press.

Smola, A., & Scholkopf, B. (2000). Sparse greedy matrix
approximation for machine learning. Proc. 17th Inter-
national Conf. on Machine Learning.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Yoon, J.-M., Gad, Y., & Wu, Z. (2000). Mathematical mod-
eling of protein structure using distance geometry (Tech-
nical Report 00-24). University of Houston.

It is important to appreciate both the immediate and
the enabling contributions of this work.

Our new incremental anytime bounding approach im-
mediately yields dramatic speedups of SVM classifica-
tion, without any loss of classification accuracy with
respect to the original SVM. Our approach follows the
guiding principle of Vapnik’s seminal SVM work (Vap-
nik, 1998): do no more work than required for the task
at hand. For SVM training, this means not modelling
probability densities for a class discrimination task.
For SVM classification, this means not computing ex-
act SVM outputs if bounds (or even just signs) suffice.

Also, as Section 7 shows for kernel Fisher discrimi-
nants, our speedups seem applicable not only to SVMs,
but any classifier of the form G(z) = x i /? iK(z , z i) ,
regardless of the objective cost function used to train.

Furthermore, our anytime approxh also opens the
door to more than “just” classification speedups per se.
Under certain assumptions (Section 4.6) our bounds
provide a reasonable basis for determining at each step
IC the probability that the original SVM would classify

as positive (or negative). Such anytime probabilistic
approaches could inform better ways to allocate com-
putational resources during large time-critical classi-
fication tasks. For example, it could inform methods
that try to minimize the expected overall test error
rate per unit of classification time spent so far, by
prioritizing work on those queries with current proba-
bilities of being classified as positive or negative being
roughly equal (e.g. queries having wide output bounds
centered near zero). When available classification time
expires, each query could classify based on anytime
probabilities at that time.

This work opens several exciting directions for future
work. One is to find better sequences (of Si points)
for a given query 9. Our methods so far (Section 5)
greedily order SVs only, and without regard to specific
queries. As reduced set work shows, vectors other than
training examples can provide more compact approx-
imations. Furthermore, different sequence orderings
and/or points will work best for different clusters of
queries, motivating future work on finding trees, in-
stead of one fixed sequence for all queries.

Finally, we argue that speeding up classification is
fundamental to speeding up other aspects, including
training and model selection. For example, we are in-
vestigating G(z) bounding during SMO training, to
speed up KKT condition checks (e..g. yiG(ai) >
1 iff ai =0) dominating training of massive data sets.

