Additional abstract forms may be made by photocopying this form, however, the abstract must not exceed (6” x 3.5”). Submissions must be received by the President before 1 March 2002

Presenting Author: Wolfgang Fink, PhD

Corresponding author: Wolfgang Fink, PhD

(All correspondence will be sent to this person at the address below.)

Address: Jet Propulsion Laboratory/California Institute of Technology
Mail Stop 126-102, Pasadena, CA 91109, USA

Telephone: (818) 393-2695 FAX: (818) 393-5244
(include country code & area code)

E-mail address: wolfgang.fink@jpl.nasa.gov

(Check one) I prefer:
Poster ☐ Oral Paper ☑ Either Poster or Oral Paper ☐
(There are a limited number of places for oral presentations; most rejections occur when oral paper only is chosen.)

☐ I wish to apply for an IPS travel award.
(Applications must be accompanied by an abbreviated curriculum vitae, a description of the applicant’s interest in perimetric research, a statement of need and a letter from the department head.)

---

NOVEL 3D COMPUTER-AUTOMATED THRESHOLD AMSLER GRID TEST

Wolfgang Fink1,2 and Alfredo A. Sadun2

1California Institute of Technology, Pasadena, CA, USA
2Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

Purpose: To introduce a novel 3D visual field test, developed by Fink and Sadun, that allows for an unprecedented characterization of the structure of visual field defects in three dimensions (see http://www.wfbabcom5.com/wf335.htm). Methods: With one eye covered the patients are placed in front of a touch-sensitive computer screen at a fixed distance. While focussing on a varying central fixation marker the patients trace with their finger the areas on an Amsler grid that are missing from their field of vision. Increasing degrees of contrast of the Amsler grid are simulated by repeating the test at different greyscale levels. The results are recorded and later displayed as topographical contour rings by the computer test program, resulting in an immediate 3D depiction of the central hill-of-vision. Results: Several clinical studies have been conducted at the Doheny Eye Institute and over 200 patients have been examined so far. Conditions such as optic neuritis, anterior ischemic optic neuropathy (AION), age-related macular degeneration (ARMD), glaucoma, and ocular hypertension have been successfully detected by the 3D visual field test. Conclusions: The 3D computer-automated threshold Amsler grid test is an innovative, non-invasive, accurate, sensitive, and fast (4-5 min. per eye) visual field test. It provides several advantages over state-of-the-art standard automated perimetry, including: a) additional information through 3D rather than 2D depiction of scotomas, such as location, extent, slope, depth, and shape; b) superior angular resolution (1° compared to typically 6°); c) simple test-setup (merely a touch-sensitive computer monitor and the test software); d) excellent patient compliance. In light of its promising initial tests, the 3D visual field test has the potential for the early detection and monitoring of various diseases over time, in particular but not limited to glaucoma and macular degeneration.

---

Return this form to: John Wild PhD, IPS President
Department of Optometry and Vision Sciences, Cardiff University,
Redwood Building, Cathays Park, Cardiff CF10 3NB, Wales, UK