
An Experimental Evaluation of the REE SIFT Environment
for Spaceborne Applications

R. Some D. Rennels K. Whisnant, R.K. Iyer, P. Jones
University of Illinois Jet Propulsion Laboratory University of California

Urbana, IL Pasadena, CA Los Angeles, CA
{ kwhisnan, iyer ,ph-j ones 1 raphael.r.some@jpl.nasa.gov rennels@cs.ucla.edu

@crhc.uiuc.edu

Abstract
This paper presents an experimental evaluation of a

software-implemented fault tolerance (SIFT) environment built
around a set of self-checking ARMOR processes running on
different machines that provide error detection and recovery
services to themselves and to spacebome scientiJc
applications. The experiments are split into three groups of
error injections, with each group successively stressing the
SIFT error detection and recovery more than the previous
group. The results show that the SIFT environment added
negligible overhead to the application during failure-free runs.
Only 12 cases were observed in which either the application

failed to start or the SIFT environment failed to recognize that
the application had completed. Further investigations showed
that assertions within the SIFTprocesses-coupled with object-
based incremental checbointing-were effective in preventing
system failures by protecting dynamic data within the SIFT
processes.

1 Introduction
In traditional spacebome applications, onboard instruments

collect and transmit raw data back to Earth for processing. The
amount of science that can be done is clearly limited by the
telemetry bandwidth to Earth. Processing the complete set of
raw data on ground, however, can be time consuming. The
Remote Exploration and Experimentation (REE) project
intends to use a cluster of commercial off-the-shelf (COTS)
processors to analyze the data onboard and send only the results
back to Earth. This approach not only saves downlink
bandwidth, but also provides the possibility of making real-
time application-oriented decisions.

While failures in the scientific applications are not critical
to the spacecraft's health in this environment (spacecraft
control is performed by a separate trusted computer), they can
be expensive nonetheless. The commercial components used
by REE are expected to experience a high rate of radiation-
induced transient errors in space (ranging from one per day to
several per hour), and downtime directly leads to the loss of
science data. Hence, a fault-tolerant environment is needed to
manage the REE applications. It is likely that the first
experiment will continue to transmit the raw data to Earth while
simultaneously using 2-8 COTS processors to analyze the
results. The goal is to ensure that the onboard analysis agrees
with the analysis traditionally done on the ground, thus helping
to smooth the transition to missions that exclusively use the
REE platform for all computations.

The missions envisioned to take advantage of the SIFT
environment for executing MPI-based [161 scientific
applications include the Mars Rover, the Orbiting Thermal
Imaging Spectrometer (OTIS), the Next-Generation Space
Telescope (NGST), the Gamma Ray Large Area Space

Telescope, and the Solar Terrestrial Probe. Although a
complete set of requirements is closely dependent upon the
particular characteristics of the scientific applications, some
facts are clear:

The SIFT environment must be able to detect and recover
from its own crash and hang failures with minimal impact
on application performance. A study of applications
indicates that a performance impact of 5% or less is
desirable.
The SIFT environment must detect and recover application
crashes and hangs.
The SIFT environment must limit error propagation.
Performance, power, and weight considerations must be
considered when designing SIFT mechanisms.
Applications will only execute in simplex mode because
resource constraints generally preclude replication.

This paper presents a methodology for experimentally
evaluating a distributed SIFT environment executing an REE
texture analysis program from the Mars Rover mission. Errors
are injected so that the consequences of faults can be studied.
The experiments do not attempt to analyze the cause of the
errors or fault coverage. Rather, the error injections
progressively stress the detection and recovery mechanisms of
the SIFT environment:
1. SIGINT/SIGSTOP injections. Many faults are known to

lead to crash and hang failures', and the
SIGINT/SIGSTOP are used to reproduce these first-order
effects of faults in a controlled manner that minimizes the
possibility of error propagation or checkpoint corruption.
Register and text-segment injections. The next set of error
injections are used to represent common effects of single-
event upsets by corrupting state in register set and text
segment memory, which introduces the possibility error
propagation and checkpoint corruption.

3 . Heap injections. The third set of experiments further
broaden the failure scenarios by injecting errors in the
dynamic heap data to maximize the possibility of error
propagation. The results from these experiments are
especially useful in evaluating how well intra-process self-
checks limit error propagation.

REE computational model. The REE computational
model consists of a trusted, radiation-hardened (rad-hard)
Spacecraft Control Computer (SCC) and a cluster of COTS
processors that execute the SIFT environment and the scientific
applications. The SCC schedules applications for execution on
the REE cluster through the SIFT environment, possibly
sharing the computational resources among several applications
through multitasking.

'

0

2.

A crashed process terminates abnormally. A hung process ceases to
make progress or becomes unresponsive to input messages, but it does
not terminate.

mailto:raphael.r.some@jpl.nasa.gov
mailto:rennels@cs.ucla.edu
mailto:crhc.uiuc.edu

REE testbed configuration. The experiments described in
this paper were executed on a 4-node testbed consisting of
PowerPC processors running the Lynx real-time operating
system. Nodes are connected through 100 Mbps Ethernet in
the testbed, although the actual onboard computing platform is
expected to use a high-speed interconnect such as Myrinet.

Between one and two megabytes of RAM on each
processor were set aside to emulate local nonvolatile memory
available to each node. The nonvolatile RAM is expected to
store temporary state information that must survive hardware
reboots (e.g., checkpointing information needed during
recovery). Nonvolatile memory visible to all nodes emulated
by a remote file system residing on a Sun workstation that
stores program executables, application input data, and
application output data.

REE MPI application. A Mars Rover texture analysis
program [SI was used as the workload application (results for
executing an application from the OTIS mission in tandem with
the texture analysis program can be found in [24]). Cameras on
the Mars Rover take images of the Martian surface and store
the images on stable storage. The program applies a series of
filters to segment the image according to texture features.
Three filters extract vectors that describe image features along
each of its three axes. A statistical clustering algorithm is
applied to the feature vectors in order to segment the image
(e.g., to distinguish between different rocks in the image), and
an output of the segmented image in feature vector space is
written back to disk. The application takes rudimentary
checkpoints by updating a status file after each filter completes.
If the application restarts, it can skip filters that have already
completed, but it must redo any filtering that was interrupted by
the application failure. The application executes on two nodes
and analyzes one image per run for the purposes of this
experiment.

2 SIFT Environment for REE
The REE applications are protected by a SIFT environment

designed around a set of self-checking processes called
ARMORS (Adaptive Reconfigurable Mobile Objects of
Reliability) that execute on each node in the testbed. ARMORS
control all operations in the SIFT environment and provide
error detection and recovery to the application and to other
ARMOR processes. We provide a brief summary of the ARMOR-
based SIFT environment as implemented for the REE
applications; additional details of the general ARMOR
architecture appear in [121.
2.1 SIFT Architecture

An ARMOR is a multithreaded process intemally structured
around objects called elements that contain their own private
data and provide elementary functions or services (e.g.,
detection and recovery for remote ARMOR processes, internal
self-checking mechanisms, and checkpointing support).
Together, the elements constitute the functionality that defines
an ARMOR’S behavior. All ARMORS contain a basic set of
elements that provide a core functionality, including the ability
to (1) implement reliable point-to-point message
communication between ARMORS, (2) communicate with the
local daemon ARMOR process, (3) respond to heartbeats from
the local daemon, and (4) capture ARMOR state. Specific
ARMORS extend this core functionality by adding extra
elements.

Each ARMOR is addressed by a unique identification
number, allowing messages to be sent to an ARMOR without a
priori knowledge of the ARMOR’S physical location. ARMORS

communicate solely through message passing, and messages
are processed in separate threads within the ARMOR. A
message consists of sequential events that trigger element
actions. Elements subscribe to events that they are designed to
process (e.g., an element can subscribe to an event that
corresponds to the termination of the application), and an
element’s state can only be modified while processing message
events. This modular, event-driven architecture permits the
ARMOR’S functionality and fault tolerance services to be
customized by choosing the particular set of elements that
make up the ARMOR.

Types of ARMORS. The SIFT environment for REE
applications consists of four kinds of ARMOR processes: a Fault
Tolerance Manager (FTM), Heartbeat ARMOR, daemons, and
Execution ARMORS

Fault Tolerance Manager (FTM). A single FTM executes
on one of the nodes and is responsible for recovering from
ARMOR and node failures as well as interfacing with the
external Spacecraft Control Computer (SCC). The FTM
contains all the basic ARMOR elements plus additional elements
to (1) accept requests to execute applications from the SCC, (2)
track resource usage of nodes in SIFT environment, (3) send
“Are-you-alive?” messages to daemons to detect node failures,
(4) install Execution ARMORS for a particular application, (5)
recover from failed subordinate ARMORS (Le., Execution
ARMORS and Heartbeat ARMOR), (6) recover from node failures
by migrating processes to another node, (7) recover from
application failures, and (8) send application status information
to SCC.

Heartbeat ARMOR. The Heartbeat ARMOR executes on a
node separate from the FTM. Its sole responsibility is to detect
and recover from failures in the FTM through the periodic
polling for liveness. This functionality is implemented in a
single element that is added to the Heartbeat ARMOR beyond
the basic set of elements found in all ARMORS.

Daemons. Each node on the network executes a daemon
process. Daemons are the gateways for ARMOR-to-ARMOR
communication, and they detect failures in the local ARMORS.
In addition to the core ARMOR configuration, the daemon
contains additional elements that permit it to (1) install other
ARMOR processes on the node, (2) communicate with local
ARMORS, (3) cache location of remote ARMORS, (4) route
messages to remote ARMORS, (5) send “Are-you-alive?’
inquires to local ARMORS to detect hang failures, (6) detect
crash failures in local ARMORS, (7) process “Are-you-alive?“
inquires from the FTM, and (8) notify the FTM to initiate
recovery of failed local ARMORS.

Each application process is directly
overseen by a local Execution ARMOR. In addition to the core
set of elements, an Execution ARMOR contains elements to (1)
launch the application processes, (2) detect crash failures in
application processes, (3) handle progress indicator updates
from the application (to be described later), and (4) notify the
FTM if the application process fails.

The ARMOR architecture permits the functionality of several
ARMORS to be merged into a single process. For example, the
functionality of the daemon and Execution ARMOR that execute
on a node can be combined into a single ARMOR. Although this
reduces the number of processes in the system, there are

Execution ARMORS.

drawbacks to consolidating functionality. Complexity of the
combined process is increased, thus increasing the probability
of software design errors. Moreover, a single failure in the
combined process will affect several more detection and
recovery mechanisms than compared to a single failure in
which the mechanisms are distributed across multiple
processes.

Table 1: Steps for running an REE application

1
Figure 1: SIFT architecture for executing two MPI

applications on a four-node network.

2.2 Executing REE Applications
Before executing any applications, the SCC first performs a

one-time installation of the daemons, FTM, and Heartbeat
ARMOR on the REE cluster. The SCC then launches
applications through the SIFT environment, prompting the
FTM to install Execution ARMORS on the appropriate nodes to
support the application. Table 1 lists the steps involved in
executing an MPI application, including the one-time
installation of the SIFT environment. If the application
perpetually executes, then the Execution ARMORS are never

uninstalled; otherwise, they are removed from the SIFT
environment after the application completes. If several
applications are sequentially executed, then the FTM can reuse
Execution ARMORS across applications.

Figure 1 illustrates a configuration of the SIFT environment
with two MPI applications (from the Mars Rover and OTIS
missions) executing on a four-node testbed. Arrows in the
figure depict the relationships between the various processes
(e.g., the application sends progress indicators to the Execution
ARMORS, the FTM is responsible for recovering from failures in
the Heartbeat ARMOR, and the FTM heartbeats the daemon
processes). While the ARMORS can be distributed across the
REE cluster in several ways, the FTM and Heartbeat ARMOR
must reside on separate nodes to tolerate single-node failures.
The entire SIFT environment can scale down to a minimal two-
node configuration if necessary: the FTM executing on the first
node, the Heartbeat ARMOR on the second, and the other ARMOR
and application processes distributed across both nodes.

Each application process is linked with a SIFT interface
that establishes a one-way communication channel with the
local Execution ARMOR at application initialization. The
application programmer can use this interface to invoke a
variety of fault tolerance services provided by the ARMOR. The
interface used for these experiments contains functions for
initializing the communication channel, using progress
indicators to detect application hangs, and closing the
communication channel.

As described in Table 1, the Execution ARMORS, the
Heartbeat ARMOR, and the FTh4 are children of their respective
daemons. The MPI process with rank 0 is also a child of its
Execution ARMOR. Because of the parent-child relationship,
crash detection for child processes is implemented by having a
thread within the parent process block on a waitpid () call to
the operating system. Because the Execution N O R s do not
directly launch MPI processes with ranks 1 through n, crash
failures in these MPI processes are also detected through other
means, which are discussed in the next section.
2.3 Error Detection Hierarchy

Node and daemon errors. The FTM periodically
exchanges heartbeat messages with each daemon (every 10 s in
our experiments) to detect node crashes and hangs. If the FTM
does not receive a response by the next heartbeat round, it
assumes that the node has failed. A daemon failure is treated as
a node failure because the local ARMORS cannot communicate
with other ARMORS in the environment if the daemon fails.

ARMOR errors. Each ARMOR contains a set of assertions on
its intemal state, including range checks, validity checks on
data (e.g., a valid ARMOR ID), and data structure integrity
checks. Other intemal self-checks available to the ARMORS
include preemptive control flow checking, VO signature
checking, and deadlocWlivelock detection [2]. In order to limit
error propagation, the ARMOR kills itself when an intemal check
detects an error. The daemon detects crash failures in the
ARMORS on the node via operating system calls. To detect hang
failures, the daemon periodically (every 10 s in the
experiments) sends "Are-you-alive?" messages to its local

REE applications. All application crash failures are
detected by the local Execution ARMOR. Crash failures in the
MPI process with rank 0 can be detected by the Execution
ARMOR through operating system calls (Le., waitpid). The
other Execution ARMORS periodically check that their MPI

ARMORS.

processes (ranks 1 through n) are still in the operating system’s
process table. If not, it concludes that the application has
crashed. An application process notifies the local Execution
ARMOR through its communication channel before exiting
normally so that the ARMOR does not misinterpret this exit as an
abnormal termination.

A polling technique is used to detect application hangs in
which the Execution ARMOR periodically checks for progress
indicator updates sent by the application. A progress indicator
is an “I’m-alive” message containing information that denotes
application progress (e.g., a loop iteration counter). If the
Execution ARMOR does not receive a progress indicator within
an application-specific time period, the ARMOR concludes that
the application process has hung. Since the texture analysis
program executes functions in an extemal fast Fourier
transform (FFT) library for about 20 s per filter, the Execution
ARMOR cannot check for application progress more often than
every 20 seconds. Finer checking granularity can be achieved
by instrumenting the FFT functions with progress indicators.
The application can also have intemal checks as well such as
algorithm-based fault tolerance (ABFT) to protect its
computation [lo]. As with the ARMOR self-checks, the
application kills itself if it cannot correct errors that are
detected through intemal checks.
2.4 Error Recovery

The FTM migrates the ARMOR and application
processes that were executing on the failed node to other
working nodes in the SIFT environment.

Instead of consuming network bandwidth by
reloading the ARMOR executable binaries to recover a failed
ARMOR, the daemon copies its own executable image to the
address space of the recovered ARMOR. This is possible
because all SIFT processes share a common ARMOR
architecture. The recovered ARMOR is then configured by
enabling and disabling the appropriate elements within the
process (e.g., enabling Execution ARMOR elements while
disabling the daemon-specific elements)’.

To protect the ARMOR state against process failures, a
checkpointing technique called microcheckpointing [23] is
used. Microcheckpointing leverages the modular element
composition of the ARMOR process to incrementally checkpoint
state on an element-by-element basis. To process a message,
an ARMOR sequentially delivers the events in the message to the
elements that have subscribed to the events. After each event
delivery, the state of the affected element is copied to a
checkpoint buffer within the ARMOR process. Because each
element is assigned a disjoint region within the checkpoint
buffer and because an element only processes one event at a
time, several threads can concurrently update the checkpoint
buffer without interference.

When the ARMOR decides to make the checkpoint
permanent, it copies the checkpoint buffer to the memory
region that emulates local nonvolatile RAM. Data stored in the
nonvolatile RAM survives node resets and is available for
process recovery. To tolerate node failures, the checkpoints
must be stored in a location that is independent of the failed
node. In the experimental implementation, checkpoints are
saved after every ARMOR message transmission to ensure that

Nodes.

ARMORS.

’ If the ARMOR repeatedly fails after being recovered in this manner, then
the error may reside in the daemon’s text segment, requiring that the
ARMOR’S image be reloaded from disk.

the set of ARMOR checkpoints in the system is always globally
consistent; thus, only a single process must be rolled back in
the event of an ARMOR failure.

REE Applications. On detecting an application failure, the
Execution ARMOR notifies the FTM to initiate recovery. The
version of MPI used by JPL on the REE testbed precludes
individual MPI processes from being restarted within an
application; therefore, the FTM instructs all Execution ARMORS
to terminate their MPI processes before restarting the
application. The application executable binaries must be
reloaded from the remote disk during recovery

3 Injection Experiments
Error injection experiments into the application and SIFT

processes were conducted to:
1 .

2.

3.

4.

5.

Stress the detection and recovery mechanisms of the SIFT
environment.
Determine the failure dependencies among SIFT and
application processes.
Measure the SIFT environment overhead on application
performance.
Measure the overhead of recovering SIFT processes as
seen by the application.
Study the effects of error propagation and the effectiveness
of intemal self-checks in limiting error propagation.

The experiments used NFTAPE [221 a software framework - -
for conducting injection campaigns.
3.1 Error Models

The error models used the injection experiments represent a
combination of those employed in several past experimental
studies [9] and those proposed by JPL engineers [4].

These signals are used to mimic
“clean” crash and hang failures as described in the introduction.

Fault analysis has
predicted that the most prevalent faults in the targeted
spacebome environment will be single-bit memory and register
faults, although shrinking feature sizes have raised the
likelihood of clock errors and multiple-bit flips in future
technologies [4]. Since the experiments aimed at assessing the
effectiveness of the SIFT environment in recovering from
failures when they occur (as opposed to assessing coverage or
likelihood of failure scenarios), register and text-segment errors
are injected with the purpose of inducing failures. Several
errors were injected uniformly distributed in time per run since
each injection is unlikely to lead to an immediate failure, and
only the most frequently-used registers and functions in the text
segment were targeted for injection.

Heap injections were used to study the
effects of error propagation. One error was injected per run
into non-pointer data values only, and the effects of the error
were traced through the system.

Errors were not injected into the operating system since our
experience shows that injections into Linux primarily either
lead to a crash, lead to a hang, or have no impact. Maderia et
al. [151 used the same REE testbed to examine the impact of
transient errors on LynxOS.
3.2 Definitions and Measurements

System, experiment, and run. We use the term system to
refer to the REE cluster and associated software (i.e., the SIFT
environment and applications). The system does not include
the rad-hard SCC or communication channel to the ground. An

SIGINT/SIGSTOP.

Register and text-segment errors.

Heap errors.

error injection experiment targeted a specific process
(application process, FTM, Execution ARMOR, or Heartbeat
ARMOR) using a specific error model. For each procederror
model pair, a series of runs were executed in which one or
more errors were injected into the target process.

Activated errors and failures. An injection causes an
error to be introduced into the system (e.g., corruption at a
selected memory location or corruption of the value in a
register). An error is said to be activated if program execution
accesses fie erroneous value. A failure refers to a process
deviating from its expected (correct) behavior as determined by
a run without fault injection. The application can also fail by
producing output that falls outside acceptable tolerance limits
as defined by an extemal application-provided verification
program.

A system failure occurs when either (1) the application
cannot complete within a predefined timeout or (2) the SIFT
environment cannot recognize that the application has
completed successhlly. These failures are caused by errors
that propagate to an ARMOR’S checkpoint or to other processes.
System failures require that the SCC reinitialize the SIFT
environment before continuing, but they do not threaten the
scc or spacecraft integrity’.

Recovery time. Recovery time is the interval between the
time at which a failure is detected and the time at which the
target process restarts. For ARMOR processes, this includes the
time required to restore the NOR’S state from checkpoint. In
the case of an application failure, the time lost to rolling back to
the most recent application checkpoint is accounted for in the
application’s total execution time, not in the recovery time for
the application.

The perceived
execution time is the interval between the time at which the
SCC submits an application for execution and the time at which
the SIFT environment reports to the SCC that the application
has completed.

Perceived application execution time.
Without SIFT

1 Perceived apglicstion
executimtim

75.71 f 0.65 75.71 f 0.65

Figure 2: Perceived vs. actual execution time
Actual application execution time. The actual execution

time is the interval between the start and the end of the
application. The difference between perceived and actual
execution time accounts for the time required to install the
Execution ARMORS before running the application and the time
required to uninstall the Execution ARMORS after the application
completes (see Figure 2). This is a fixed overhead independent
of the actual application execution time. The REE applications
envisioned to take advantage of this environment are expected
to be long-running, so the performance impact of the fixed
overhead will be less apparent than in our testbed applications
that use small input data sets. We differentiate between the

’ While the vast majority of failures in the SIFT environment will not
affect the trusted SCC, in reality there exists a nonzero probability that
the SCC can be impacted by SIFT failures. We discount this possibility
in the paper because there is not a hll-fledged SCC available for
conducting such an analysis.

perceived and actual execution times because it is important to
assess how the SIFT environment responds to errors during the
setup and takedown phases of an application’s execution.

In the injection
experiments, the perceived and actual application execution
times are compared to a baseline measurement in order to
determine the performance overhead added by the SIFT
environment and recovery. Two measures of baseline
application performance are used: (1) the application executing
without the SIFT environment and without fault injection, and
(2) the application executing in the SIFT environment but
without fault injection. The difference between these two
measures provides the overhead that the SIFT processes impose
on the application. Table 2 shows that the SIFT environment
adds less than two seconds to the perceived application
execution time. The actual execution time overhead is not
statistically significant. The sections that follow add a third
measurement, namely the application execution time in the
presence of failures and recovery. Comparing this
measurement to the baseline measurement gives the amount of
overhead as seen by the application due to recovery.

The mean application execution time and recovery time are
calculated for each fault model. Ninety-five percent confidence
intervals (t-distribution) are also calculated for all
measurements. The remainder of this section introduces key
terms used in presenting and interpreting the experimental
results.

Table 2: Baseline application execution time

Baseline application execution time.

I Perceived I Actual 11

4 Crash and Hang Failures
This section presents results from SIGINT and SIGSTOP

injections into the application and SIFT processes, which were
used to evaluate the SIFT environment’s ability to handle crash
and hang failures. We first summarize the major findings from
over 700 crash and hang injections:

All injected errors into both the application and SIFT
processes were recovered.
Recovering from errors in SIFT processes imposed a mean
overhead of 5% to the application’s actual execution time.
This 5% overhead includes 25 cases out of roughly 700
runs in which the application was forced to block or restart
because of the unavailability of a SIFT process.
Neglecting these cases in which the application must redo
lost computation, the overhead imposed by a recovering
SIFT process is insignificant.
Correlated failures involving a SIFT process and the
application were observed. In 25 cases, crash and hang
failures caused a SIFT process to become unavailable,
prompting the application to fail when it did not receive a
timely response from the failed SIFT process. All
correlated failures were successfully recovered.

Results for 100 runs per target are summarized in Table 3.
In some cases, the injection time (used to determine when to
inject the error) occurred after the application completed. For
these runs, no error was injected. The row “Baseline” reports

the application execution time with no fault injection.’ One
hundred runs were chosen in order to ensure that failures
occurred throughout the various phases of an application’s
execution (including an idle SIFT environment before
application execution, application submission and initialization,
application execution, application termination and subsequent
cleanup of the SIFT environment).

Table 3: SIGINT/SIGSTOP injection results

4.1 Application Recovery
Hangs are the most expensive application failures in terms

of lost processing time. As discussed in section 2.3, application
hangs are detected using a polling technique in which the
Execution ARMOR executes a thread that wakes up every 20
seconds to check the value of a counter incremented by
progress indicator messages sent by the application. Because
the counter is polled at fixed intervals, the error detection
latency for hangs can be up to twice the checking period*. This
latency can be decreased by instrumenting the application with
progress indicators at a finer granularity, but the unavailability
of source code for some of the libraries used by the Mars Rover
application precluded fine-grained instrumentation.

In addition to rollback recovery, the REE applications are
expected to support forward recovery as well. The REE
applications are designed to operate on new data each iteration
cycle, so the application can either recompute the interrupted
cycle or wait for new data in the next cycle when an error
occurs. Our experiments assume the former, since input data is
available for reprocessing when the application restarts. If the
application is required to complete a fixed number of cycles
before completing, however, the execution time will be the
same on average for both rollback and forward recovery.
4.2 SIFT Environment Recovery

FTM. The perceived execution time for the application is
extended if (1) the FTM fails while setting up the environment
before the application execution begins or (2) the FTM fails
while cleaning up the environment and notifying the Spacecraft

’ Although the processing boards were reserved for our experiments, the
remote disk was shared with other users. Approximately 30 baseline
runs were conducted between each set of experiments for the fault
model, and the average baseline measurements are reported for each
fault model. When experiments across fault models were run during the
same timeframe in which the external workload was relatively constant,
only one baseline measurement is given.
Consider the case in which the application reports progress immediately
after the last check by the Execution ARMOR and then hangs. Progress
will appear to have been made during the next time by the Execution
ARMOR check--only during the second check from the hang will the
Execution ARMOR truly detect that no progress has been made.

Control Computer that the application terminated. The
application is decoupled from the FTM’s execution after
starting, so failures in the FTM do not affect it. The only
overhead in actual execution time originates from the network
contention during the FTM’s recovery, which lasts for only 0.6-
0.7 s.

An FTM-application correlated failure. The error
injections also revealed a correlated failure in which the FTM
failure caused the application to restart in 2 of the 178 runs.
Recall that during the setup phase the FTM installs an
Execution ARMOR and the MPI process with rank 0 on the first
node. The MPI process then installs the other MPI process on
the second node. The rank 0 process sends the process ID of
the other MPI process to the Execution ARMOR on the second
node via the FTM. If the FTM fails during this period, then the
rank 0 MPI process times out waiting for the other process to
start (i.e., the MPI application aborts). Once the FTM recovers,
the application is restarted.

The SIFT environment is able to recover from this
correlated failure because the components performing the
detection (Heartbeat ARMOR detecting FTM failures and
Execution ARMOR detecting application failures) are not
affected by the failures. The Execution ARMOR resends the
“application-failed” message to the FTM until it receives an
acknowledgment. Once recovered, the FTM receives the
Execution ARMOR’S message and restarts the application.

Execution ARMOR. Of the 198 crashhang errors injected
into the Execution ARMORS, 175 required recovery only in the
Execution ARMOR. For these runs, the application execution
overhead was negligible. The overhead reported in Table 3 (up
to 10% for hang failures) resulted from the remaining 23 cases
in which the application was forced to restart.

An Execution ARMOR-application correlated failure. If the
application process attempted to contact the Execution ARMOR
(e.g., to send progress indicator updates or to notify the
Execution ARMOR that it is terminating normally) while the
ARMOR was recovering, the application process blocked until
the Execution ARMOR completely recovered. Because the MPI
processes are tightly coupled, a correlated failure is possible if
the Execution ARMOR overseeing the other MPI process
diagnosed the blocking as an application hang and initiated
recovery.

This correlated failure occurred most often when the
Execution ARMOR hung (i.e., due to SIGSTOP injections): 22
correlated failures were due to SIGSTOP injections as opposed
to 1 correlated failure resulting from an ARMOR crash @e., due
to SIGINT injections). This is because an Execution ARMOR
crash failure is detected immediately by the daemon through
operating system calls, making the Execution ARMOR
unavailable for only a short time. Hangs, however, are detected
via 10-second heartbeat. Although increasing the daemon-to-
Execution ARMOR heartbeat frequency can reduce the detection
latency, care must be taken to avoid false alarms.

5 Register and Text-Segment Injections
This section expands the scope of the injections to further

stress the detection and recovery mechanisms by allowing for
the possibility of checkpoint corruption and error propagation
to another process. Results from approximately 9,000 single-
bit errors into the register set and text segment of the
application and SIFT processes show that:

Most register and text-segment errors led to crash and
hang failures that were recovered by the SIFT
environment.
Eleven of the approximately 700 observed failures led to
system failures in which either the application did not
complete or the SIFT environment did not detect that the
application successfully completed. These 1 1 system
failures resulted from injected errors that corrupted an
ARMOR’S checkpoint or propagated outside the injected
process.
Text-segment errors were more likely to lead to system
failures than register errors. This was because values in
registers typically had a shorter lifetime (i.e., they were
either never used or quickly overwritten) when compared
to information stored in the text segment.

Table 4 summarizes the results of approximately 6,000

77/77 1 62

- *

register injections and 3,000 text-segment injections into both
the application and ARMOR processes. Failures are classified
into four categories: segmentation fault, illegal instruction,
hang, and errors detected via assertions. The second column in
Table 4 gives the number of successful recoveries vs. the
number of failures for each set of experiments. Errors that were
not successfully recovered led to system failures (4 due to FTM
failures, 5 due to Execution ARMOR failures, and 2 due to
Heartbeat ARMOR failures).

Table 4: Register and text-segment injection results

6 I 8
1 73.00 f 0.22 70.66 f 0.21 0.31 f 0.04

the FTM and application recovered from all seven correlated
failures.

Execution ARMOR. There were three register injections
and two text-segment injections into the Execution ARMOR that
led to a system failure. In each of these cases, the error
propagated to other ARMOR processes or to the Execution
ARMOR’S checkpoint:
1. One text-segment injection and three register injections
caused errors in the Execution ARMOR to propagate to the FTM
(i.e., the error was not fail-silent). Although the Execution
ARMOR did not crash, it sent corrupted data to the FTM when
the application terminated, causing the FTM to crash. The
FTM state in its checkpoint was not affected by the error, so the
FTM was able to recover to a valid state. Because the FTM did
not complete processing the Execution ARMOR’S notification
message, the FTM did not send an acknowledgment back to the
Execution ARMOR. The missing acknowledgment prompted the
Execution ARMOR to resend the faulty message, which again
caused the FTM to crash. This cycle of recovery followed by
the retransmission of faulty data continued until the run timed
out.
2. One of the text-segment injections caused the Execution
ARMOR to save a corrupted checkpoint before crashing. When
the ARMOR recovered, it restored its state from the faulty
checkpoint and crashed shortly thereafter. This cycle repeated

until the run timed out.

Application
FTM

Execution
ARMOR

Heartbeat
ARMOR

Failure Classification App. Exec. Time (s)

Actual Time (s)
Target Recoveries!

Failures Seg. Illegal Hang Assat- Perceived I I fault I instr. I I ion

82/82 41 23 18 0 89.47f2.87 87.49f2.88 1.05 f0 .33
84/88 53 28 5 2 76.47f2.87 7 1 . 0 0 f 2 . 3 1 0 . 5 1 f 0 . 0 5

93/95 45 31 I 1 8 77.48f1.93 74.83f1.86 0.43*0.04

53 33 I 1 0 73.23 f 0.37 71.21 f 0.36 0.30 fO.01 95 , 97

I I I I I I I

Baseline 1 - 1 - 1 - 71.96 f 0.32 70.03 f 0.27
Register Injections

IIADDlicationl 95 /95 I 71 I 4 I 20 I 0 I 90.70f2.57 I 88.81 f2 .57 I0 .70f0 .21 11

I .. I[i 84/84 i 58 j 6 i 16 i i 75.65f 1.54 i 73.42f 1.28 i 0.71 f0.03 I
Execution 11 ARMOR I 77 /80 I 56 I 6 I l 5 I 3 I 76.19* 1.82 I 73.56f 1.83 I 0.45f0.08 11

II II

5.1 SIFT Environment Recovery
FTM. Table 4 shows that the FTM successfully recovered

from all register injections. Two text-segment injections were
detected through assertions on the FTM’s internal data
structures, and both of these errors were recovered. The extent
to which assertions prevent corrupted state from escaping the
process is investigated via heap injections in section 6.

Table 4 also shows that the FTM could not recover from
four text-segment errors. In each case, the error corrupted the
FTM’s checkpoint prior to crashing. Because the checkpoint
was corrupted, the FTM crashed shortly after being recovered.
This cycle of failure and recovery repeated until the run timed
out.

There were seven cases of a correlated failure in which the
FTM failed during the application’s initialization: three from
text-segment injections and four from register injections. Both

In addition to the system failures described
above, three text-segment injections into the
Execution ARMOR resulted in the restarting of
the texture analysis application. All three of
these correlated failures were successfully
recovered.

Heartbeat ARMOR. The Heartbeat ARMOR
recovered from all register errors, while text-
segment injections brought about two system
failures. Although no corrupted state escaped
the Heartbeat M O R , the error prevented the
Heartbeat ARMOR from receiving incoming
messages. Thus, the Heartbeat ARMOR falsely
detected that the FTM had failed, since it did
not receive a heartbeat reply from the FTM.
The ARMOR then began to initiate recovery of
the FTM by (1) instructing the FTM’s daemon
to reinstall the FTM process, and (2) instructing
the FTM to restore its state from checkpoint
after receiving acknowledgment that the FTM -

has been successfully reinstalred.
As a result of the error, the Heartbeat ARMOR never

received the acknowledgement in step two, thus preventing it
from sending a follow-up message to restore the FTM state.
Although the immediate problem (Le., causing a situation in
which the FTM is left unrecovered) can be solved by
combining the reinstallation of the FTM and state restoration
into a single operation without the intermediate
acknowledgment, the underlying problem persists in which the
Heartbeat ARMOR suffers from receive omissions. Because the
Heartbeat ARMOR cannot receive incoming messages, it will
continue to detect a failed FTM during subsequent heartbeat
rounds.

To detect the receive omission error, an element can be
added to the Heartbeat ARMOR that performs a series of self-
tests on key ARMOR functionality before the heartbeat messages

Table 5: System failures observed through heal injections

verified by either the local daemon or by the receiving ARMOR.
Additional error injection experiments can be used to evaluate
the coverage of these additional self-checks on ARMOR
functionality.

Among the successful recoveries from text-segment errors
shown in Table 4, four involved corrupted heartbeat messages
that caused the FTM to fail. Although faulty data escaped the
Heartbeat ARMOR, the corrupted message did not compromise
the FTM’s checkpoint. Thus, the FTM was able to recover
from these four failures.

6 Heap Injections
Careful examination of the register injection experiments

showed that crash failures were most often caused by
segmentation faults raised from dereferencing a corrupted
pointer. To maximize the chances for error propagation, only
data (not pointers) were injected on the heap. Results from
targeted injections into FTM heap memory are grouped by the
element into which the error was injected. Table 5 shows the
number of system failures observed from 100 error injections
per element, classified as to the their effect on the system. One
hundred targeted injections were sufficient to observe either
escaped or detected errors given the amount of state in each
element; overall, 500 heap injections were conducted on the
FTM ,

Many data errors were detectable through intemal
assertions within the FTM, but not all assertions were effective
in preventing system failures. One of four scenarios resulted
after a data error was injected (the last three columns in Table 5
are numbered to refer to scenarios 2-4):
1. The data error was not detected by an assertion and had no

effect on the system. The application completed
successfiilly as if there were no error.
The data error was not detected by an assertion but led to a
system failure. None of the system failures impacted the
application while it was executing.
The data error was detected by an assertion check but after
the error had propagated to the FTM’s checkpoint or to
another process. Rolling back the FTM’s state in these
circumstances was ineffective, and system failures resulted
from which the SIFT environment could not recover.

2.

3.

Leeend (Effect on system):
(A) Unable to register daemons.
(B)
(C) Unable to start applications.
0) Unable to uninstall Execution ARMORS after

application completes.

Unable to install Execution ARMORS.

L&
(2)
(3)
(4)

System failure without assertion !iring.
System failure with assertion firing.
Successhl recoveries after assertion tired.

; show that error latency is a factor when
attempting to recover from errors in a distributed
environment.
The data error was detected by an assertion check before
propagating to the FTM’s checkpoint or to another
process. After an assertion fired, the FTM killed itself and
recovered as if it had experienced an ordinary crash
failure.

The injection results in Table 5 show that some state
information was more sensitive to error propagation than
others. The least sensitive elements (app-param and
mgr-app-de tect) were those modules whose state was
substantially read-only after being written early within the run.
With assertions in place, none of the data errors led to system
failures. At the other end of the sensitivity spectrum, 28 errors
in two elements caused system failures. In contrast with the
elements causing no system failures, the data in
mgr-armor-info and node--mgmt were repeatedly
written during the initialization phases of a run.

Table 5 also shows the efficiency of assertion checks in
preventing system failures. The rightmost two columns in the
table represent the total number of runs in which assertions
detected errors. For example, assertions in the
mgr armor-info element detected 27 errors, and 19 of
thoseerrors were successfully recovered. The Venn diagram to
the right of the first row depicts the relationship between the set
of runs experiencing system failure and the set of runs in which
an assertion fired.

The data also show that assertions coupled with the
incremental micro-checkpointing were able to prevent system
failures in 58% of the cases (27 of 64 runs in which assertions
fired). Recall that after an event within a message is processed
by an element, only this element’s state is copied to the
checkpoint buffer. Incidental corruption to other elements
(e.g., an error causing the event to overwrite another element’s
data) will not be saved to the checkpoint buffer. Thus, a clean
copy of the corrupted element’s state exists in the ARMOR’S
checkpoint for recovery as long as fiiture events do not
legitimately write to the corrupted element.

On the other hand, assertions detected the error too late to
prevent system failures in 27 cases. For example, 14 of the 17

4.

runs in which assertions detected errors in the node-mgmt
element resulted in system failures. This element translates
hostnames into daemon IDS. When the SCC instructs the FTM
to execute an application on a particular set of nodes, the FTM
translates the hostnames to daemon IDS via the node-mgmt
element. If the element cannot perform the translation, it uses a
default daemon ID of zero for its response. The FTM attempts
to send a message to the translated daemon ID, but it did not
check to make sure that the retumed daemon ID is nonzero. If
the translation fails because of an error, the FTM's daemon
detects that the message destination ID is invalid. The
detection occurs too late, however, since the error already
propagated outside the FTM. This problem was rectified by
adding checks to the translation results before sending the
message.

7 Lessons Learned
SIFT overhead should be kept small. System designers

must be aware that SIFT solutions have the potential to degrade
the performance and even the dependability of the applications
that they are intended to protect. Our experiments show that
the functionality in SIFT can be distributed among several
processes throughout the network so that the overhead imposed
by the SIFT processes is insignificant while the application is
running.

SIFT recovery time should be kept small. Minimizing
the SIFT process recovery time is desirable from two
standpoints: (1) recovering SIFT processes have the potential to
affect application performance by contending for processor and
network resources, and (2) applications requiring support from
the SIFT environment are affected when SIFT processes
become unavailable. Our results indicate that fully recovering
a SIFT process takes approximately 0.5 s. The mean overhead
as seen by the application from SIFT recovery is less than 5%,
which takes into account 10 out of roughly 800 failures from
register, text-segment and heap injections that caused the
application to block or restart because of the unavailability of a
SIFT process. The overhead from recovery is insignificant
when these 10 cases are neglected.

SIFT/application interface should be kept simple. In any
multiprocess SIFT design, some SIFT processes must be
coupled to the application in order to provide error detection
and recovery. The Execution ARMORS play this role in our
SIFT environment. Because of this dependency, it is important
to make the Execution ARMORS as simple as possible. All
recovery actions and those operations that affect the global
system (such as job submission, preparing the node to execute
an application, and detecting remote node failures) are
delegated to a remote SIFT process that is decoupled from the
application's execution. This strategy appears to work, as only
6 of 414 observed Execution ARMOR failures' led to system
failures.

SIFT availability impacts the application. Low recovery
time and aggressive checkpointing of the SIFT processes help
minimize the SIFT environment downtime, making the
environment available for processing application requests and
for recovering application failures.

If the SIFT environment cannot recover from a failure, then
responsibility rests on the SCC or the ground station to recover

the REE cluster. This externally-controlled recovery, however,
can be quite expensive in terms of application downtime since
the entire cluster must be diagnosed and reinitialized before
restarting the SIFT environment. Downtime can be on the
order of hours if not days under such scenarios if ground
control is required, underscoring the need for rapid onboard
detection and recovery.

System failures are not necessarily fatal. Only 12 of the
17,000 injections resulted in a system failure in which the SIFT
environment could not recover from the error. These system
failures were not catastrophic in the sense that they impacted
the spacecraft or SCC. In fact, none affected an executing
application.

To reduce the number of system failures, a timeout can be
placed on the application connecting to the SIFT environment.
Because the time between submission and connection is usually
small, errors that occur in the critical phase of preparing the
SIFT environment for a new application can be detected using
this timeout without significant delay. Once the application
starts, our experience has shown that it is well-protected and
relatively immune to errors in the SIFT environment.

8 Related Work
Few experimental assessments of distributed fault tolerance

environments have been undertaken. Three notable exceptions
include:

MARS. Three types of physical fault injection (pin-level
injections, heavy-ion radiation from a Califomium-252 isotope,
and electromagnetic interference) were used to study the fail
silence coverage of the Maintainable Real-Time System
(MARS) [13]. MARS achieves fail silence in these
experiments through process duplication across nodes. A real-
time control program was used as the test application for these
experiments. A later study compared software-implemented
fault injection to the three physical injection approaches [9].

Delta-4. Pin-level injections were performed to evaluate
the fail silence coverage of the Delta4 atomic multicast
protocol [13. Fail silence was achieved by designing network
interface cards around duplicated hardware on which the
atomic multicast protocol executes.

Hades. Software-implemented fault injectors were used to
inject errors into the Chorus microkemel and the Hades
middleware, a collection of run-time services for real-time
applications executing on COTS processors [6]. This
experiment evaluated the coverage of the Hades error detection
mechanisms while running an object tracking application.

It is not clear if any of these studies validated how well the
fault tolerance environment recovers from its own errors or
how such errors impact performance. All were primarily
interested in showing that the environment's error detection and
masking were sufficient to maintain fail silence.

In addition to the three environments presented above, there
are several other projects involved in providing software-
implemented fault tolerance. AQUA [7] and Etemal [17]
replicate CORBA objects. Arjuna [20] achieves reliability
through transactions and replication. GUARDS [191 provides a
generic framework for fault tolerance and integrity
management. CoCheck [21], FT-MPI [8], and MPWT [3]
cater specifically to MPI applications by offering synchronous
checkpointing, extended MPI function semantics for error
handling, and replication, respectively. Finally, FTCT [111 ' SIGINT, SIGSTOP, register, text-segment, and heap injections caused

100,98, 80, 95, and 41 failures, respectively.

adds fault tolerance to cluster management by replicating a
central manager.

None of these environments has been evaluated using a
substantial application. Most use either synthetic benchmarks
or a program with the complexity on the order of an echo
server, making it difficult to evaluate the SIFT environment’s
ability to handle correlated failures and error propagation since
the application process interactions-including those with other
application processes and with the SIFT processes-are simple
and infiequent.

Finally, few of these SIFT solutions have utilized extensive
fault injection to demonstrate that their infrastructures are fault-
tolerant. Some have undergone testing in which the user kills
processes from the command line, but few have gone beyond
using crash and hang failures to validate functionality. As our
experiments have shown, injections into the text segment,
registers, and heap were required to see correlated failures,
error propagation, corrupted checkpoints, and system failures.

9 Conclusion
This paper has presented a series of experiments in which

the error detection and recovery mechanisms of a distributed
SIFT environment have been stressed through over 17,000
error injections into a Mars Rover texture analysis program and
the SIFT processes themselves. The results show that:
1. Structuring the fault injection experiments to progressively

stress the error detection and recovery mechanisms is a
useful approach to evaluating performance and error
propagation.
Even though the probability for correlated failures is small,
its potential impact on application availability is
significant.
The SIFT environment successfully recovered from all
correlated failures involving the application and a SIFT
process because the processes performing error detection
and recovery were decoupled from the failed processes.
Targeted injections into dynamic data on the heap were
useful in further investigating system failures brought
about by error propagation. Only non-pointer values were
injected, and injections were limited to specific modules
within the SIFT process to better trace the error effects.
Assertions within the SIFT processes were shown to
reduce the number of system failures from data error
propagation by up to 42%. This suggests that detection
mechanisms can be incorporated into the common ARMOR
infrastructure to preemptively check for errors before state
changes occur within the SIFT processes, thus decreasing
the probability of error propagation and checkpoint
corruption.

Acknowledgments
This work was supported in part by a NASNPL contract
961345 and by NSF grants CCR 00-86096 ITR and CCR

References

2.

3.

4.

99-02026.

[I] J. Arlat, et al., “Experimental evaluation of the fault tolerance of an
atomic multicast system,” in IEEE Trans. on Reliability, vol. 39,
no. 4, pp. 455467, October 1990.
S. Bagchi, “Hierarchical error detection in a software-implemented
fault tolerance (SIFT) environment,” Ph.D. Thesis, University of
Illinois, Urbana, IL, 2001.
R. Batchu, et al., “MPI/FT: Architecture and taxonomies for fault-
tolerant, message-passing middleware for performance-portable

[2]

[3]

parallel computing,” in Proceedings of the First International
Symposium of Cluster Computing and the Grid, pp. 26-33,2001.
J. Beahan, et al., “Detailed radiation fault modeling of the remove
exploration and experimentation (REE) first generation testbed
architecture,” in Proceedings of the IEEE Aerospace Conference,

F. Chen, et al., “Demonstration of the Remote Exploration and
Experimentation (REE) fault-tolerant parallel-processing
supercomputa for spacecraft onboard scientific data processing,”
in DSN-00, pp. 367-372,2OOO.
P. Chevocot and I. Puaut, “Experimental evaluation of the fail-
silent behavior of a distributed real-time run-time support build
from COTS components,” in DSN-01, pp. 304-3 13,2001.
M. Cukier, et ai., “AQUA An adaptive architecture that provides
dependable distributed objects,” in SRDS-I 7, pp. 245-253, 1998.
G. Fagg and J. Dongm, “FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” Lecture Notes in
Computer Science, vol. 1908, Springer-Verilag: Berlin, pp. 346-
353,2000.
E. Fuchs, “Validating the fail-silence assumption of the MARS
architecture,” in DCCA-6, pp. 225-247, 1998.
J. Gunnels, D. Katz, E. Quintana-Orti, and R. van de Geijn, “Fault-
tolerant high-performance matrix multiplication: theory and
practice,” in DSN-01. pp. 47-56,2001,
M. Li, D. Goldberg, W. Tao, and Y. Tamir, “Fault-tolerant cluster
management for reliable high-performance computing,” in
Proceedings of the 13th Conference on Parallel and Distributed
Computing and Systems, pp. 480485,2001.
2. Kalbarczyk, R. Iyer, S. Bagchi, K. Whisnant, “Chameleon: A
software infrastructure for adaptive fault tolerance,” IEEE Truns.
on Parallel and Distributed Systems, vol. 10, no. 6, pp. 560-579,
1999.
J. Karlsson, J. Arlat, and G. Leber, “Application of three physical
fault injection techniques to the experimental assessment of the
MARS architecture,”in DCCA-5, pp. 150-161, 1995.
S. Kems, et al., ‘The design of radiation-hardened ICs for space: A
compendium of approaches,” Proceedings of the IEEE, vol. 76, no.
11, pp. 1470-1509, November 1988.
H. Maderia, R. Some, F. Moereira, D. Costa, D. Rennels,
“Experimental evaluation of a COTS system for space
applications,” in DSN-02, 2002.
Message Passing Interface Fc” , “MPI-2: Extensions to the
Message Passing Interface,” h t t p : //www.mpi-
forum.org/docs/mpi-20.ps.
L. Moser, P. Melliar-Smith, and P. Narasimhan, “A fault tolerance
framework for CORBA,” in FTCS-29, pp. 150-157, 1999.
D. Powell, P. Verissimo, G. Bonn, F. Waeselynck, and D. Seaton,
“The Delta4 approach to dependability in open distributed
computing systems,” in FTCS-Ia, pp. 246-251, 1988.
D. Powell, et al., “GUARDS: A Generic upgradable architecture
for real-time dependable systems, ” IEEE Trans. on Parallel and
Distributed Systems, vol. 10, no. 6, pp. 580-599, 1999.
S. Shrivastava, “Lessons leamed from building and using the
Arjuna distributed programming system,” Lecture Notes in
Computer Science, vol. 938, Springer-Verilag, Berlin, 1995.
G. Stellner, “CoCheck: Checkpointing and process migration for
MPI,” in Proceedings of the 10th International Parallel
Processing Symposium, pp. 526-53 1, 1996.
D. Stott, B. Floering, Z. Kalbarczyk, and R. Iyer, “Dependability
assessment in distributed systems with lightweight fault injectors
in NFTAPE,” in IPDS-00, pp. 91-100,2000.
K. Whisnant, Z. Kalbarczyk, and R. Iyer, “Micro-checkpointing:
Checkpointing for multiheaded applications,” in Proceedings of
the 6th International &-Line Testing Workshop, July 2000.
IC. Whisnant, R. Iyer, Z. Kalbarczyk, P. Jones, “An Experimental
Evaluation of the ARMOR-based REE Software-Implemented Fault
Tolerance Environment,” pending technical report, University of
Illinois, Urbana, JL, 2001.

VOI. 5, pp. 279-281,2000.

