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Abstract 
This paper presents an experimental evaluation of a 

software-implemented fault tolerance (SIFT) environment built 
around a set of self-checking ARMOR processes running on 
different machines that provide error detection and recovery 
services to themselves and to spacebome scientiJc 
applications. The experiments are split into three groups of 
error injections, with each group successively stressing the 
SIFT error detection and recovery more than the previous 
group. The results show that the SIFT environment added 
negligible overhead to the application during failure-free runs. 
Only 12 cases were observed in which either the application 

failed to start or the SIFT environment failed to recognize that 
the application had completed. Further investigations showed 
that assertions within the SIFTprocesses-coupled with object- 
based incremental checbointing-were effective in preventing 
system failures by protecting dynamic data within the SIFT 
processes. 

1 Introduction 
In traditional spacebome applications, onboard instruments 

collect and transmit raw data back to Earth for processing. The 
amount of science that can be done is clearly limited by the 
telemetry bandwidth to Earth. Processing the complete set of 
raw data on ground, however, can be time consuming. The 
Remote Exploration and Experimentation (REE) project 
intends to use a cluster of commercial off-the-shelf (COTS) 
processors to analyze the data onboard and send only the results 
back to Earth. This approach not only saves downlink 
bandwidth, but also provides the possibility of making real- 
time application-oriented decisions. 

While failures in the scientific applications are not critical 
to the spacecraft's health in this environment (spacecraft 
control is performed by a separate trusted computer), they can 
be expensive nonetheless. The commercial components used 
by REE are expected to experience a high rate of radiation- 
induced transient errors in space (ranging from one per day to 
several per hour), and downtime directly leads to the loss of 
science data. Hence, a fault-tolerant environment is needed to 
manage the REE applications. It is likely that the first 
experiment will continue to transmit the raw data to Earth while 
simultaneously using 2-8 COTS processors to analyze the 
results. The goal is to ensure that the onboard analysis agrees 
with the analysis traditionally done on the ground, thus helping 
to smooth the transition to missions that exclusively use the 
REE platform for all computations. 

The missions envisioned to take advantage of the SIFT 
environment for executing MPI-based [ 161 scientific 
applications include the Mars Rover, the Orbiting Thermal 
Imaging Spectrometer (OTIS), the Next-Generation Space 
Telescope (NGST), the Gamma Ray Large Area Space 

Telescope, and the Solar Terrestrial Probe. Although a 
complete set of requirements is closely dependent upon the 
particular characteristics of the scientific applications, some 
facts are clear: 

The SIFT environment must be able to detect and recover 
from its own crash and hang failures with minimal impact 
on application performance. A study of applications 
indicates that a performance impact of 5% or less is 
desirable. 
The SIFT environment must detect and recover application 
crashes and hangs. 
The SIFT environment must limit error propagation. 
Performance, power, and weight considerations must be 
considered when designing SIFT mechanisms. 
Applications will only execute in simplex mode because 
resource constraints generally preclude replication. 

This paper presents a methodology for experimentally 
evaluating a distributed SIFT environment executing an REE 
texture analysis program from the Mars Rover mission. Errors 
are injected so that the consequences of faults can be studied. 
The experiments do not attempt to analyze the cause of the 
errors or fault coverage. Rather, the error injections 
progressively stress the detection and recovery mechanisms of 
the SIFT environment: 
1. SIGINT/SIGSTOP injections. Many faults are known to 

lead to crash and hang failures', and the 
SIGINT/SIGSTOP are used to reproduce these first-order 
effects of faults in a controlled manner that minimizes the 
possibility of error propagation or checkpoint corruption. 
Register and text-segment injections. The next set of error 
injections are used to represent common effects of single- 
event upsets by corrupting state in register set and text 
segment memory, which introduces the possibility error 
propagation and checkpoint corruption. 

3 .  Heap injections. The third set of experiments further 
broaden the failure scenarios by injecting errors in the 
dynamic heap data to maximize the possibility of error 
propagation. The results from these experiments are 
especially useful in evaluating how well intra-process self- 
checks limit error propagation. 

REE computational model. The REE computational 
model consists of a trusted, radiation-hardened (rad-hard) 
Spacecraft Control Computer (SCC) and a cluster of COTS 
processors that execute the SIFT environment and the scientific 
applications. The SCC schedules applications for execution on 
the REE cluster through the SIFT environment, possibly 
sharing the computational resources among several applications 
through multitasking. 
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A crashed process terminates abnormally. A hung process ceases to 
make progress or becomes unresponsive to input messages, but it does 
not terminate. 
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REE testbed configuration. The experiments described in 
this paper were executed on a 4-node testbed consisting of 
PowerPC processors running the Lynx real-time operating 
system. Nodes are connected through 100 Mbps Ethernet in 
the testbed, although the actual onboard computing platform is 
expected to use a high-speed interconnect such as Myrinet. 

Between one and two megabytes of RAM on each 
processor were set aside to emulate local nonvolatile memory 
available to each node. The nonvolatile RAM is expected to 
store temporary state information that must survive hardware 
reboots (e.g., checkpointing information needed during 
recovery). Nonvolatile memory visible to all nodes emulated 
by a remote file system residing on a Sun workstation that 
stores program executables, application input data, and 
application output data. 

REE MPI application. A Mars Rover texture analysis 
program [SI was used as the workload application (results for 
executing an application from the OTIS mission in tandem with 
the texture analysis program can be found in [24]). Cameras on 
the Mars Rover take images of the Martian surface and store 
the images on stable storage. The program applies a series of 
filters to segment the image according to texture features. 
Three filters extract vectors that describe image features along 
each of its three axes. A statistical clustering algorithm is 
applied to the feature vectors in order to segment the image 
(e.g., to distinguish between different rocks in the image), and 
an output of the segmented image in feature vector space is 
written back to disk. The application takes rudimentary 
checkpoints by updating a status file after each filter completes. 
If the application restarts, it can skip filters that have already 
completed, but it must redo any filtering that was interrupted by 
the application failure. The application executes on two nodes 
and analyzes one image per run for the purposes of this 
experiment. 

2 SIFT Environment for REE 
The REE applications are protected by a SIFT environment 

designed around a set of self-checking processes called 
ARMORS (Adaptive Reconfigurable Mobile Objects of 
Reliability) that execute on each node in the testbed. ARMORS 
control all operations in the SIFT environment and provide 
error detection and recovery to the application and to other 
ARMOR processes. We provide a brief summary of the ARMOR- 
based SIFT environment as implemented for the REE 
applications; additional details of the general ARMOR 
architecture appear in [ 121. 
2.1 SIFT Architecture 

An ARMOR is a multithreaded process intemally structured 
around objects called elements that contain their own private 
data and provide elementary functions or services (e.g., 
detection and recovery for remote ARMOR processes, internal 
self-checking mechanisms, and checkpointing support). 
Together, the elements constitute the functionality that defines 
an ARMOR’S behavior. All ARMORS contain a basic set of 
elements that provide a core functionality, including the ability 
to (1) implement reliable point-to-point message 
communication between ARMORS, (2) communicate with the 
local daemon ARMOR process, (3) respond to heartbeats from 
the local daemon, and (4) capture ARMOR state. Specific 
ARMORS extend this core functionality by adding extra 
elements. 

Each ARMOR is addressed by a unique identification 
number, allowing messages to be sent to an ARMOR without a 
priori knowledge of the ARMOR’S physical location. ARMORS 

communicate solely through message passing, and messages 
are processed in separate threads within the ARMOR. A 
message consists of sequential events that trigger element 
actions. Elements subscribe to events that they are designed to 
process (e.g., an element can subscribe to an event that 
corresponds to the termination of the application), and an 
element’s state can only be modified while processing message 
events. This modular, event-driven architecture permits the 
ARMOR’S functionality and fault tolerance services to be 
customized by choosing the particular set of elements that 
make up the ARMOR. 

Types of ARMORS. The SIFT environment for REE 
applications consists of four kinds of ARMOR processes: a Fault 
Tolerance Manager (FTM), Heartbeat ARMOR, daemons, and 
Execution ARMORS 

Fault Tolerance Manager (FTM). A single FTM executes 
on one of the nodes and is responsible for recovering from 
ARMOR and node failures as well as interfacing with the 
external Spacecraft Control Computer (SCC). The FTM 
contains all the basic ARMOR elements plus additional elements 
to (1) accept requests to execute applications from the SCC, (2) 
track resource usage of nodes in SIFT environment, (3) send 
“Are-you-alive?” messages to daemons to detect node failures, 
(4) install Execution ARMORS for a particular application, (5) 
recover from failed subordinate ARMORS (Le., Execution 
ARMORS and Heartbeat ARMOR), (6) recover from node failures 
by migrating processes to another node, (7) recover from 
application failures, and (8) send application status information 
to SCC. 

Heartbeat ARMOR. The Heartbeat ARMOR executes on a 
node separate from the FTM. Its sole responsibility is to detect 
and recover from failures in the FTM through the periodic 
polling for liveness. This functionality is implemented in a 
single element that is added to the Heartbeat ARMOR beyond 
the basic set of elements found in all ARMORS. 

Daemons. Each node on the network executes a daemon 
process. Daemons are the gateways for ARMOR-to-ARMOR 
communication, and they detect failures in the local ARMORS. 
In addition to the core ARMOR configuration, the daemon 
contains additional elements that permit it to (1) install other 
ARMOR processes on the node, (2) communicate with local 
ARMORS, (3) cache location of remote ARMORS, (4) route 
messages to remote ARMORS, (5) send “Are-you-alive?’ 
inquires to local ARMORS to detect hang failures, (6) detect 
crash failures in local ARMORS, (7) process “Are-you-alive?“ 
inquires from the FTM, and (8) notify the FTM to initiate 
recovery of failed local ARMORS. 

Each application process is directly 
overseen by a local Execution ARMOR. In addition to the core 
set of elements, an Execution ARMOR contains elements to (1) 
launch the application processes, (2) detect crash failures in 
application processes, (3) handle progress indicator updates 
from the application (to be described later), and (4) notify the 
FTM if the application process fails. 

The ARMOR architecture permits the functionality of several 
ARMORS to be merged into a single process. For example, the 
functionality of the daemon and Execution ARMOR that execute 
on a node can be combined into a single ARMOR. Although this 
reduces the number of processes in the system, there are 
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drawbacks to consolidating functionality. Complexity of the 
combined process is increased, thus increasing the probability 
of software design errors. Moreover, a single failure in the 
combined process will affect several more detection and 
recovery mechanisms than compared to a single failure in 
which the mechanisms are distributed across multiple 
processes. 

Table 1: Steps for running an REE application 

1 
Figure 1: SIFT architecture for executing two MPI 

applications on a four-node network. 

2.2 Executing REE Applications 
Before executing any applications, the SCC first performs a 

one-time installation of the daemons, FTM, and Heartbeat 
ARMOR on the REE cluster. The SCC then launches 
applications through the SIFT environment, prompting the 
FTM to install Execution ARMORS on the appropriate nodes to 
support the application. Table 1 lists the steps involved in 
executing an MPI application, including the one-time 
installation of the SIFT environment. If the application 
perpetually executes, then the Execution ARMORS are never 

uninstalled; otherwise, they are removed from the SIFT 
environment after the application completes. If several 
applications are sequentially executed, then the FTM can reuse 
Execution ARMORS across applications. 

Figure 1 illustrates a configuration of the SIFT environment 
with two MPI applications (from the Mars Rover and OTIS 
missions) executing on a four-node testbed. Arrows in the 
figure depict the relationships between the various processes 
(e.g., the application sends progress indicators to the Execution 
ARMORS, the FTM is responsible for recovering from failures in 
the Heartbeat ARMOR, and the FTM heartbeats the daemon 
processes). While the ARMORS can be distributed across the 
REE cluster in several ways, the FTM and Heartbeat ARMOR 
must reside on separate nodes to tolerate single-node failures. 
The entire SIFT environment can scale down to a minimal two- 
node configuration if necessary: the FTM executing on the first 
node, the Heartbeat ARMOR on the second, and the other ARMOR 
and application processes distributed across both nodes. 

Each application process is linked with a SIFT interface 
that establishes a one-way communication channel with the 
local Execution ARMOR at application initialization. The 
application programmer can use this interface to invoke a 
variety of fault tolerance services provided by the ARMOR. The 
interface used for these experiments contains functions for 
initializing the communication channel, using progress 
indicators to detect application hangs, and closing the 
communication channel. 

As described in Table 1, the Execution ARMORS, the 
Heartbeat ARMOR, and the FTh4 are children of their respective 
daemons. The MPI process with rank 0 is also a child of its 
Execution ARMOR. Because of the parent-child relationship, 
crash detection for child processes is implemented by having a 
thread within the parent process block on a waitpid ( ) call to 
the operating system. Because the Execution N O R s  do not 
directly launch MPI processes with ranks 1 through n, crash 
failures in these MPI processes are also detected through other 
means, which are discussed in the next section. 
2.3 Error Detection Hierarchy 

Node and daemon errors. The FTM periodically 
exchanges heartbeat messages with each daemon (every 10 s in 
our experiments) to detect node crashes and hangs. If the FTM 
does not receive a response by the next heartbeat round, it 
assumes that the node has failed. A daemon failure is treated as 
a node failure because the local ARMORS cannot communicate 
with other ARMORS in the environment if the daemon fails. 

ARMOR errors. Each ARMOR contains a set of assertions on 
its intemal state, including range checks, validity checks on 
data (e.g., a valid ARMOR ID), and data structure integrity 
checks. Other intemal self-checks available to the ARMORS 
include preemptive control flow checking, VO signature 
checking, and deadlocWlivelock detection [2]. In order to limit 
error propagation, the ARMOR kills itself when an intemal check 
detects an error. The daemon detects crash failures in the 
ARMORS on the node via operating system calls. To detect hang 
failures, the daemon periodically (every 10 s in the 
experiments) sends "Are-you-alive?" messages to its local 

REE applications. All application crash failures are 
detected by the local Execution ARMOR. Crash failures in the 
MPI process with rank 0 can be detected by the Execution 
ARMOR through operating system calls (Le., waitpid). The 
other Execution ARMORS periodically check that their MPI 
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processes (ranks 1 through n) are still in the operating system’s 
process table. If not, it concludes that the application has 
crashed. An application process notifies the local Execution 
ARMOR through its communication channel before exiting 
normally so that the ARMOR does not misinterpret this exit as an 
abnormal termination. 

A polling technique is used to detect application hangs in 
which the Execution ARMOR periodically checks for progress 
indicator updates sent by the application. A progress indicator 
is an “I’m-alive” message containing information that denotes 
application progress (e.g., a loop iteration counter). If the 
Execution ARMOR does not receive a progress indicator within 
an application-specific time period, the ARMOR concludes that 
the application process has hung. Since the texture analysis 
program executes functions in an extemal fast Fourier 
transform (FFT) library for about 20 s per filter, the Execution 
ARMOR cannot check for application progress more often than 
every 20 seconds. Finer checking granularity can be achieved 
by instrumenting the FFT functions with progress indicators. 
The application can also have intemal checks as well such as 
algorithm-based fault tolerance (ABFT) to protect its 
computation [lo]. As with the ARMOR self-checks, the 
application kills itself if it cannot correct errors that are 
detected through intemal checks. 
2.4 Error Recovery 

The FTM migrates the ARMOR and application 
processes that were executing on the failed node to other 
working nodes in the SIFT environment. 

Instead of consuming network bandwidth by 
reloading the ARMOR executable binaries to recover a failed 
ARMOR, the daemon copies its own executable image to the 
address space of the recovered ARMOR. This is possible 
because all SIFT processes share a common ARMOR 
architecture. The recovered ARMOR is then configured by 
enabling and disabling the appropriate elements within the 
process (e.g., enabling Execution ARMOR elements while 
disabling the daemon-specific elements)’. 

To protect the ARMOR state against process failures, a 
checkpointing technique called microcheckpointing [23] is 
used. Microcheckpointing leverages the modular element 
composition of the ARMOR process to incrementally checkpoint 
state on an element-by-element basis. To process a message, 
an ARMOR sequentially delivers the events in the message to the 
elements that have subscribed to the events. After each event 
delivery, the state of the affected element is copied to a 
checkpoint buffer within the ARMOR process. Because each 
element is assigned a disjoint region within the checkpoint 
buffer and because an element only processes one event at a 
time, several threads can concurrently update the checkpoint 
buffer without interference. 

When the ARMOR decides to make the checkpoint 
permanent, it copies the checkpoint buffer to the memory 
region that emulates local nonvolatile RAM. Data stored in the 
nonvolatile RAM survives node resets and is available for 
process recovery. To tolerate node failures, the checkpoints 
must be stored in a location that is independent of the failed 
node. In the experimental implementation, checkpoints are 
saved after every ARMOR message transmission to ensure that 
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’ If the ARMOR repeatedly fails after being recovered in this manner, then 
the error may reside in the daemon’s text segment, requiring that the 
ARMOR’S image be reloaded from disk. 

the set of ARMOR checkpoints in the system is always globally 
consistent; thus, only a single process must be rolled back in 
the event of an ARMOR failure. 

REE Applications. On detecting an application failure, the 
Execution ARMOR notifies the FTM to initiate recovery. The 
version of MPI used by JPL on the REE testbed precludes 
individual MPI processes from being restarted within an 
application; therefore, the FTM instructs all Execution ARMORS 
to terminate their MPI processes before restarting the 
application. The application executable binaries must be 
reloaded from the remote disk during recovery 

3 Injection Experiments 
Error injection experiments into the application and SIFT 

processes were conducted to: 
1 .  

2. 

3.  

4. 

5. 

Stress the detection and recovery mechanisms of the SIFT 
environment. 
Determine the failure dependencies among SIFT and 
application processes. 
Measure the SIFT environment overhead on application 
performance. 
Measure the overhead of recovering SIFT processes as 
seen by the application. 
Study the effects of error propagation and the effectiveness 
of intemal self-checks in limiting error propagation. 

The experiments used NFTAPE [221 a software framework - -  
for conducting injection campaigns. 
3.1 Error Models 

The error models used the injection experiments represent a 
combination of those employed in several past experimental 
studies [9] and those proposed by JPL engineers [4]. 

These signals are used to mimic 
“clean” crash and hang failures as described in the introduction. 

Fault analysis has 
predicted that the most prevalent faults in the targeted 
spacebome environment will be single-bit memory and register 
faults, although shrinking feature sizes have raised the 
likelihood of clock errors and multiple-bit flips in future 
technologies [4]. Since the experiments aimed at assessing the 
effectiveness of the SIFT environment in recovering from 
failures when they occur (as opposed to assessing coverage or 
likelihood of failure scenarios), register and text-segment errors 
are injected with the purpose of inducing failures. Several 
errors were injected uniformly distributed in time per run since 
each injection is unlikely to lead to an immediate failure, and 
only the most frequently-used registers and functions in the text 
segment were targeted for injection. 

Heap injections were used to study the 
effects of error propagation. One error was injected per run 
into non-pointer data values only, and the effects of the error 
were traced through the system. 

Errors were not injected into the operating system since our 
experience shows that injections into Linux primarily either 
lead to a crash, lead to a hang, or have no impact. Maderia et 
al. [ 151 used the same REE testbed to examine the impact of 
transient errors on LynxOS. 
3.2 Definitions and Measurements 

System, experiment, and run. We use the term system to 
refer to the REE cluster and associated software (i.e., the SIFT 
environment and applications). The system does not include 
the rad-hard SCC or communication channel to the ground. An 

SIGINT/SIGSTOP. 

Register and text-segment errors. 

Heap errors. 



error injection experiment targeted a specific process 
(application process, FTM, Execution ARMOR, or Heartbeat 
ARMOR) using a specific error model. For each procederror 
model pair, a series of runs were executed in which one or 
more errors were injected into the target process. 

Activated errors and failures. An injection causes an 
error to be introduced into the system (e.g., corruption at a 
selected memory location or corruption of the value in a 
register). An error is said to be activated if program execution 
accesses fie erroneous value. A failure refers to a process 
deviating from its expected (correct) behavior as determined by 
a run without fault injection. The application can also fail by 
producing output that falls outside acceptable tolerance limits 
as defined by an extemal application-provided verification 
program. 

A system failure occurs when either (1) the application 
cannot complete within a predefined timeout or (2) the SIFT 
environment cannot recognize that the application has 
completed successhlly. These failures are caused by errors 
that propagate to an ARMOR’S checkpoint or to other processes. 
System failures require that the SCC reinitialize the SIFT 
environment before continuing, but they do not threaten the 
scc or spacecraft integrity’. 

Recovery time. Recovery time is the interval between the 
time at which a failure is detected and the time at which the 
target process restarts. For ARMOR processes, this includes the 
time required to restore the NOR’S state from checkpoint. In 
the case of an application failure, the time lost to rolling back to 
the most recent application checkpoint is accounted for in the 
application’s total execution time, not in the recovery time for 
the application. 

The perceived 
execution time is the interval between the time at which the 
SCC submits an application for execution and the time at which 
the SIFT environment reports to the SCC that the application 
has completed. 

Perceived application execution time. 
Without SIFT 

1 Perceived apglicstion 
executimtim 

75.71 f 0.65 75.71 f 0.65 

Figure 2: Perceived vs. actual execution time 
Actual application execution time. The actual execution 

time is the interval between the start and the end of the 
application. The difference between perceived and actual 
execution time accounts for the time required to install the 
Execution ARMORS before running the application and the time 
required to uninstall the Execution ARMORS after the application 
completes (see Figure 2). This is a fixed overhead independent 
of the actual application execution time. The REE applications 
envisioned to take advantage of this environment are expected 
to be long-running, so the performance impact of the fixed 
overhead will be less apparent than in our testbed applications 
that use small input data sets. We differentiate between the 

’ While the vast majority of failures in the SIFT environment will not 
affect the trusted SCC, in reality there exists a nonzero probability that 
the SCC can be impacted by SIFT failures. We discount this possibility 
in the paper because there is not a hll-fledged SCC available for 
conducting such an analysis. 

perceived and actual execution times because it is important to 
assess how the SIFT environment responds to errors during the 
setup and takedown phases of an application’s execution. 

In the injection 
experiments, the perceived and actual application execution 
times are compared to a baseline measurement in order to 
determine the performance overhead added by the SIFT 
environment and recovery. Two measures of baseline 
application performance are used: (1) the application executing 
without the SIFT environment and without fault injection, and 
(2) the application executing in the SIFT environment but 
without fault injection. The difference between these two 
measures provides the overhead that the SIFT processes impose 
on the application. Table 2 shows that the SIFT environment 
adds less than two seconds to the perceived application 
execution time. The actual execution time overhead is not 
statistically significant. The sections that follow add a third 
measurement, namely the application execution time in the 
presence of failures and recovery. Comparing this 
measurement to the baseline measurement gives the amount of 
overhead as seen by the application due to recovery. 

The mean application execution time and recovery time are 
calculated for each fault model. Ninety-five percent confidence 
intervals (t-distribution) are also calculated for all 
measurements. The remainder of this section introduces key 
terms used in presenting and interpreting the experimental 
results. 

Table 2: Baseline application execution time 

Baseline application execution time. 

I Perceived I Actual 11 

4 Crash and Hang Failures 
This section presents results from SIGINT and SIGSTOP 

injections into the application and SIFT processes, which were 
used to evaluate the SIFT environment’s ability to handle crash 
and hang failures. We first summarize the major findings from 
over 700 crash and hang injections: 

All injected errors into both the application and SIFT 
processes were recovered. 
Recovering from errors in SIFT processes imposed a mean 
overhead of 5% to the application’s actual execution time. 
This 5% overhead includes 25 cases out of roughly 700 
runs in which the application was forced to block or restart 
because of the unavailability of a SIFT process. 
Neglecting these cases in which the application must redo 
lost computation, the overhead imposed by a recovering 
SIFT process is insignificant. 
Correlated failures involving a SIFT process and the 
application were observed. In 25 cases, crash and hang 
failures caused a SIFT process to become unavailable, 
prompting the application to fail when it did not receive a 
timely response from the failed SIFT process. All 
correlated failures were successfully recovered. 

Results for 100 runs per target are summarized in Table 3. 
In some cases, the injection time (used to determine when to 
inject the error) occurred after the application completed. For 
these runs, no error was injected. The row “Baseline” reports 



the application execution time with no fault injection.’ One 
hundred runs were chosen in order to ensure that failures 
occurred throughout the various phases of an application’s 
execution (including an idle SIFT environment before 
application execution, application submission and initialization, 
application execution, application termination and subsequent 
cleanup of the SIFT environment). 

Table 3: SIGINT/SIGSTOP injection results 

4.1 Application Recovery 
Hangs are the most expensive application failures in terms 

of lost processing time. As discussed in section 2.3, application 
hangs are detected using a polling technique in which the 
Execution ARMOR executes a thread that wakes up every 20 
seconds to check the value of a counter incremented by 
progress indicator messages sent by the application. Because 
the counter is polled at fixed intervals, the error detection 
latency for hangs can be up to twice the checking period*. This 
latency can be decreased by instrumenting the application with 
progress indicators at a finer granularity, but the unavailability 
of source code for some of the libraries used by the Mars Rover 
application precluded fine-grained instrumentation. 

In addition to rollback recovery, the REE applications are 
expected to support forward recovery as well. The REE 
applications are designed to operate on new data each iteration 
cycle, so the application can either recompute the interrupted 
cycle or wait for new data in the next cycle when an error 
occurs. Our experiments assume the former, since input data is 
available for reprocessing when the application restarts. If the 
application is required to complete a fixed number of cycles 
before completing, however, the execution time will be the 
same on average for both rollback and forward recovery. 
4.2 SIFT Environment Recovery 

FTM. The perceived execution time for the application is 
extended if (1) the FTM fails while setting up the environment 
before the application execution begins or (2) the FTM fails 
while cleaning up the environment and notifying the Spacecraft 

’ Although the processing boards were reserved for our experiments, the 
remote disk was shared with other users. Approximately 30 baseline 
runs were conducted between each set of experiments for the fault 
model, and the average baseline measurements are reported for each 
fault model. When experiments across fault models were run during the 
same timeframe in which the external workload was relatively constant, 
only one baseline measurement is given. 
Consider the case in which the application reports progress immediately 
after the last check by the Execution ARMOR and then hangs. Progress 
will appear to have been made during the next time by the Execution 
ARMOR check--only during the second check from the hang will the 
Execution ARMOR truly detect that no progress has been made. 

Control Computer that the application terminated. The 
application is decoupled from the FTM’s execution after 
starting, so failures in the FTM do not affect it. The only 
overhead in actual execution time originates from the network 
contention during the FTM’s recovery, which lasts for only 0.6- 
0.7 s. 

An FTM-application correlated failure. The error 
injections also revealed a correlated failure in which the FTM 
failure caused the application to restart in 2 of the 178 runs. 
Recall that during the setup phase the FTM installs an 
Execution ARMOR and the MPI process with rank 0 on the first 
node. The MPI process then installs the other MPI process on 
the second node. The rank 0 process sends the process ID of 
the other MPI process to the Execution ARMOR on the second 
node via the FTM. If the FTM fails during this period, then the 
rank 0 MPI process times out waiting for the other process to 
start (i.e., the MPI application aborts). Once the FTM recovers, 
the application is restarted. 

The SIFT environment is able to recover from this 
correlated failure because the components performing the 
detection (Heartbeat ARMOR detecting FTM failures and 
Execution ARMOR detecting application failures) are not 
affected by the failures. The Execution ARMOR resends the 
“application-failed” message to the FTM until it receives an 
acknowledgment. Once recovered, the FTM receives the 
Execution ARMOR’S message and restarts the application. 

Execution ARMOR. Of the 198 crashhang errors injected 
into the Execution ARMORS, 175 required recovery only in the 
Execution ARMOR. For these runs, the application execution 
overhead was negligible. The overhead reported in Table 3 (up 
to 10% for hang failures) resulted from the remaining 23 cases 
in which the application was forced to restart. 

An Execution ARMOR-application correlated failure. If the 
application process attempted to contact the Execution ARMOR 
(e.g., to send progress indicator updates or to notify the 
Execution ARMOR that it is terminating normally) while the 
ARMOR was recovering, the application process blocked until 
the Execution ARMOR completely recovered. Because the MPI 
processes are tightly coupled, a correlated failure is possible if 
the Execution ARMOR overseeing the other MPI process 
diagnosed the blocking as an application hang and initiated 
recovery. 

This correlated failure occurred most often when the 
Execution ARMOR hung (i.e., due to SIGSTOP injections): 22 
correlated failures were due to SIGSTOP injections as opposed 
to 1 correlated failure resulting from an ARMOR crash @e., due 
to SIGINT injections). This is because an Execution ARMOR 
crash failure is detected immediately by the daemon through 
operating system calls, making the Execution ARMOR 
unavailable for only a short time. Hangs, however, are detected 
via 10-second heartbeat. Although increasing the daemon-to- 
Execution ARMOR heartbeat frequency can reduce the detection 
latency, care must be taken to avoid false alarms. 

5 Register and Text-Segment Injections 
This section expands the scope of the injections to further 

stress the detection and recovery mechanisms by allowing for 
the possibility of checkpoint corruption and error propagation 
to another process. Results from approximately 9,000 single- 
bit errors into the register set and text segment of the 
application and SIFT processes show that: 



Most register and text-segment errors led to crash and 
hang failures that were recovered by the SIFT 
environment. 
Eleven of the approximately 700 observed failures led to 
system failures in which either the application did not 
complete or the SIFT environment did not detect that the 
application successfully completed. These 1 1 system 
failures resulted from injected errors that corrupted an 
ARMOR’S checkpoint or propagated outside the injected 
process. 
Text-segment errors were more likely to lead to system 
failures than register errors. This was because values in 
registers typically had a shorter lifetime (i.e., they were 
either never used or quickly overwritten) when compared 
to information stored in the text segment. 

Table 4 summarizes the results of approximately 6,000 
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register injections and 3,000 text-segment injections into both 
the application and ARMOR processes. Failures are classified 
into four categories: segmentation fault, illegal instruction, 
hang, and errors detected via assertions. The second column in 
Table 4 gives the number of successful recoveries vs. the 
number of failures for each set of experiments. Errors that were 
not successfully recovered led to system failures (4 due to FTM 
failures, 5 due to Execution ARMOR failures, and 2 due to 
Heartbeat ARMOR failures). 

Table 4: Register and text-segment injection results 

6 I 8 
1 73.00 f 0.22 70.66 f 0.21 0.31 f 0.04 

the FTM and application recovered from all seven correlated 
failures. 

Execution ARMOR. There were three register injections 
and two text-segment injections into the Execution ARMOR that 
led to a system failure. In each of these cases, the error 
propagated to other ARMOR processes or to the Execution 
ARMOR’S checkpoint: 
1. One text-segment injection and three register injections 
caused errors in the Execution ARMOR to propagate to the FTM 
(i.e., the error was not fail-silent). Although the Execution 
ARMOR did not crash, it sent corrupted data to the FTM when 
the application terminated, causing the FTM to crash. The 
FTM state in its checkpoint was not affected by the error, so the 
FTM was able to recover to a valid state. Because the FTM did 
not complete processing the Execution ARMOR’S notification 
message, the FTM did not send an acknowledgment back to the 
Execution ARMOR. The missing acknowledgment prompted the 
Execution ARMOR to resend the faulty message, which again 
caused the FTM to crash. This cycle of recovery followed by 
the retransmission of faulty data continued until the run timed 
out. 
2. One of the text-segment injections caused the Execution 
ARMOR to save a corrupted checkpoint before crashing. When 
the ARMOR recovered, it restored its state from the faulty 
checkpoint and crashed shortly thereafter. This cycle repeated 

until the run timed out. 

Application 
FTM 

Execution 
ARMOR 

Heartbeat 
ARMOR 

Failure Classification App. Exec. Time (s) 

Actual Time (s) 
Target Recoveries! 

Failures Seg. Illegal Hang Assat- Perceived I I fault I instr. I I ion 
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84/88  53 28 5 2 76.47f2.87 7 1 . 0 0 f 2 . 3 1 0 . 5 1 f 0 . 0 5  
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5.1 SIFT Environment Recovery 
FTM. Table 4 shows that the FTM successfully recovered 

from all register injections. Two text-segment injections were 
detected through assertions on the FTM’s internal data 
structures, and both of these errors were recovered. The extent 
to which assertions prevent corrupted state from escaping the 
process is investigated via heap injections in section 6. 

Table 4 also shows that the FTM could not recover from 
four text-segment errors. In each case, the error corrupted the 
FTM’s checkpoint prior to crashing. Because the checkpoint 
was corrupted, the FTM crashed shortly after being recovered. 
This cycle of failure and recovery repeated until the run timed 
out. 

There were seven cases of a correlated failure in which the 
FTM failed during the application’s initialization: three from 
text-segment injections and four from register injections. Both 

In addition to the system failures described 
above, three text-segment injections into the 
Execution ARMOR resulted in the restarting of 
the texture analysis application. All three of 
these correlated failures were successfully 
recovered. 

Heartbeat ARMOR. The Heartbeat ARMOR 
recovered from all register errors, while text- 
segment injections brought about two system 
failures. Although no corrupted state escaped 
the Heartbeat M O R ,  the error prevented the 
Heartbeat ARMOR from receiving incoming 
messages. Thus, the Heartbeat ARMOR falsely 
detected that the FTM had failed, since it did 
not receive a heartbeat reply from the FTM. 
The ARMOR then began to initiate recovery of 
the FTM by (1) instructing the FTM’s daemon 
to reinstall the FTM process, and (2) instructing 
the FTM to restore its state from checkpoint 
after receiving acknowledgment that the FTM - 

has been successfully reinstalred. 
As a result of the error, the Heartbeat ARMOR never 

received the acknowledgement in step two, thus preventing it 
from sending a follow-up message to restore the FTM state. 
Although the immediate problem (Le., causing a situation in 
which the FTM is left unrecovered) can be solved by 
combining the reinstallation of the FTM and state restoration 
into a single operation without the intermediate 
acknowledgment, the underlying problem persists in which the 
Heartbeat ARMOR suffers from receive omissions. Because the 
Heartbeat ARMOR cannot receive incoming messages, it will 
continue to detect a failed FTM during subsequent heartbeat 
rounds. 

To detect the receive omission error, an element can be 
added to the Heartbeat ARMOR that performs a series of self- 
tests on key ARMOR functionality before the heartbeat messages 



Table 5: System failures observed through heal injections 

verified by either the local daemon or by the receiving ARMOR. 
Additional error injection experiments can be used to evaluate 
the coverage of these additional self-checks on ARMOR 
functionality. 

Among the successful recoveries from text-segment errors 
shown in Table 4, four involved corrupted heartbeat messages 
that caused the FTM to fail. Although faulty data escaped the 
Heartbeat ARMOR, the corrupted message did not compromise 
the FTM’s checkpoint. Thus, the FTM was able to recover 
from these four failures. 

6 Heap Injections 
Careful examination of the register injection experiments 

showed that crash failures were most often caused by 
segmentation faults raised from dereferencing a corrupted 
pointer. To maximize the chances for error propagation, only 
data (not pointers) were injected on the heap. Results from 
targeted injections into FTM heap memory are grouped by the 
element into which the error was injected. Table 5 shows the 
number of system failures observed from 100 error injections 
per element, classified as to the their effect on the system. One 
hundred targeted injections were sufficient to observe either 
escaped or detected errors given the amount of state in each 
element; overall, 500 heap injections were conducted on the 
FTM , 

Many data errors were detectable through intemal 
assertions within the FTM, but not all assertions were effective 
in preventing system failures. One of four scenarios resulted 
after a data error was injected (the last three columns in Table 5 
are numbered to refer to scenarios 2-4): 
1. The data error was not detected by an assertion and had no 

effect on the system. The application completed 
successfiilly as if there were no error. 
The data error was not detected by an assertion but led to a 
system failure. None of the system failures impacted the 
application while it was executing. 
The data error was detected by an assertion check but after 
the error had propagated to the FTM’s checkpoint or to 
another process. Rolling back the FTM’s state in these 
circumstances was ineffective, and system failures resulted 
from which the SIFT environment could not recover. 

2. 

3. 

Leeend (Effect on system): 
(A) Unable to register daemons. 
(B) 
(C) Unable to start applications. 
0) Unable to uninstall Execution ARMORS after 

application completes. 

Unable to install Execution ARMORS. 

L& 
(2) 
(3) 
(4) 

System failure without assertion !iring. 
System failure with assertion firing. 
Successhl recoveries after assertion tired. 

; show that error latency is a factor when 
attempting to recover from errors in a distributed 
environment. 
The data error was detected by an assertion check before 
propagating to the FTM’s checkpoint or to another 
process. After an assertion fired, the FTM killed itself and 
recovered as if it had experienced an ordinary crash 
failure. 

The injection results in Table 5 show that some state 
information was more sensitive to error propagation than 
others. The least sensitive elements (app-param and 
mgr-app-de tect) were those modules whose state was 
substantially read-only after being written early within the run. 
With assertions in place, none of the data errors led to system 
failures. At the other end of the sensitivity spectrum, 28 errors 
in two elements caused system failures. In contrast with the 
elements causing no system failures, the data in 
mgr-armor-info and node--mgmt were repeatedly 
written during the initialization phases of a run. 

Table 5 also shows the efficiency of assertion checks in 
preventing system failures. The rightmost two columns in the 
table represent the total number of runs in which assertions 
detected errors. For example, assertions in the 
mgr armor-info element detected 27 errors, and 19 of 
thoseerrors were successfully recovered. The Venn diagram to 
the right of the first row depicts the relationship between the set 
of runs experiencing system failure and the set of runs in which 
an assertion fired. 

The data also show that assertions coupled with the 
incremental micro-checkpointing were able to prevent system 
failures in 58% of the cases (27 of 64 runs in which assertions 
fired). Recall that after an event within a message is processed 
by an element, only this element’s state is copied to the 
checkpoint buffer. Incidental corruption to other elements 
(e.g., an error causing the event to overwrite another element’s 
data) will not be saved to the checkpoint buffer. Thus, a clean 
copy of the corrupted element’s state exists in the ARMOR’S 
checkpoint for recovery as long as fiiture events do not 
legitimately write to the corrupted element. 

On the other hand, assertions detected the error too late to 
prevent system failures in 27 cases. For example, 14 of the 17 

4. 



runs in which assertions detected errors in the node-mgmt 
element resulted in system failures. This element translates 
hostnames into daemon IDS. When the SCC instructs the FTM 
to execute an application on a particular set of nodes, the FTM 
translates the hostnames to daemon IDS via the node-mgmt 
element. If the element cannot perform the translation, it uses a 
default daemon ID of zero for its response. The FTM attempts 
to send a message to the translated daemon ID, but it did not 
check to make sure that the retumed daemon ID is nonzero. If 
the translation fails because of an error, the FTM's daemon 
detects that the message destination ID is invalid. The 
detection occurs too late, however, since the error already 
propagated outside the FTM. This problem was rectified by 
adding checks to the translation results before sending the 
message. 

7 Lessons Learned 
SIFT overhead should be kept small. System designers 

must be aware that SIFT solutions have the potential to degrade 
the performance and even the dependability of the applications 
that they are intended to protect. Our experiments show that 
the functionality in SIFT can be distributed among several 
processes throughout the network so that the overhead imposed 
by the SIFT processes is insignificant while the application is 
running. 

SIFT recovery time should be kept small. Minimizing 
the SIFT process recovery time is desirable from two 
standpoints: (1) recovering SIFT processes have the potential to 
affect application performance by contending for processor and 
network resources, and (2) applications requiring support from 
the SIFT environment are affected when SIFT processes 
become unavailable. Our results indicate that fully recovering 
a SIFT process takes approximately 0.5 s. The mean overhead 
as seen by the application from SIFT recovery is less than 5%, 
which takes into account 10 out of roughly 800 failures from 
register, text-segment and heap injections that caused the 
application to block or restart because of the unavailability of a 
SIFT process. The overhead from recovery is insignificant 
when these 10 cases are neglected. 

SIFT/application interface should be kept simple. In any 
multiprocess SIFT design, some SIFT processes must be 
coupled to the application in order to provide error detection 
and recovery. The Execution ARMORS play this role in our 
SIFT environment. Because of this dependency, it is important 
to make the Execution ARMORS as simple as possible. All 
recovery actions and those operations that affect the global 
system (such as job submission, preparing the node to execute 
an application, and detecting remote node failures) are 
delegated to a remote SIFT process that is decoupled from the 
application's execution. This strategy appears to work, as only 
6 of 414 observed Execution ARMOR failures' led to system 
failures. 

SIFT availability impacts the application. Low recovery 
time and aggressive checkpointing of the SIFT processes help 
minimize the SIFT environment downtime, making the 
environment available for processing application requests and 
for recovering application failures. 

If the SIFT environment cannot recover from a failure, then 
responsibility rests on the SCC or the ground station to recover 

the REE cluster. This externally-controlled recovery, however, 
can be quite expensive in terms of application downtime since 
the entire cluster must be diagnosed and reinitialized before 
restarting the SIFT environment. Downtime can be on the 
order of hours if not days under such scenarios if ground 
control is required, underscoring the need for rapid onboard 
detection and recovery. 

System failures are not necessarily fatal. Only 12 of the 
17,000 injections resulted in a system failure in which the SIFT 
environment could not recover from the error. These system 
failures were not catastrophic in the sense that they impacted 
the spacecraft or SCC. In fact, none affected an executing 
application. 

To reduce the number of system failures, a timeout can be 
placed on the application connecting to the SIFT environment. 
Because the time between submission and connection is usually 
small, errors that occur in the critical phase of preparing the 
SIFT environment for a new application can be detected using 
this timeout without significant delay. Once the application 
starts, our experience has shown that it is well-protected and 
relatively immune to errors in the SIFT environment. 

8 Related Work 
Few experimental assessments of distributed fault tolerance 

environments have been undertaken. Three notable exceptions 
include: 

MARS. Three types of physical fault injection (pin-level 
injections, heavy-ion radiation from a Califomium-252 isotope, 
and electromagnetic interference) were used to study the fail 
silence coverage of the Maintainable Real-Time System 
(MARS) [13]. MARS achieves fail silence in these 
experiments through process duplication across nodes. A real- 
time control program was used as the test application for these 
experiments. A later study compared software-implemented 
fault injection to the three physical injection approaches [9]. 

Delta-4. Pin-level injections were performed to evaluate 
the fail silence coverage of the Delta4 atomic multicast 
protocol [ 13. Fail silence was achieved by designing network 
interface cards around duplicated hardware on which the 
atomic multicast protocol executes. 

Hades. Software-implemented fault injectors were used to 
inject errors into the Chorus microkemel and the Hades 
middleware, a collection of run-time services for real-time 
applications executing on COTS processors [6]. This 
experiment evaluated the coverage of the Hades error detection 
mechanisms while running an object tracking application. 

It is not clear if any of these studies validated how well the 
fault tolerance environment recovers from its own errors or 
how such errors impact performance. All were primarily 
interested in showing that the environment's error detection and 
masking were sufficient to maintain fail silence. 

In addition to the three environments presented above, there 
are several other projects involved in providing software- 
implemented fault tolerance. AQUA [7] and Etemal [17] 
replicate CORBA objects. Arjuna [20] achieves reliability 
through transactions and replication. GUARDS [ 191 provides a 
generic framework for fault tolerance and integrity 
management. CoCheck [21], FT-MPI [8], and MPWT [3] 
cater specifically to MPI applications by offering synchronous 
checkpointing, extended MPI function semantics for error 
handling, and replication, respectively. Finally, FTCT [ 111 ' SIGINT, SIGSTOP, register, text-segment, and heap injections caused 

100,98, 80, 95, and 41 failures, respectively. 



adds fault tolerance to cluster management by replicating a 
central manager. 

None of these environments has been evaluated using a 
substantial application. Most use either synthetic benchmarks 
or a program with the complexity on the order of an echo 
server, making it difficult to evaluate the SIFT environment’s 
ability to handle correlated failures and error propagation since 
the application process interactions-including those with other 
application processes and with the SIFT processes-are simple 
and infiequent. 

Finally, few of these SIFT solutions have utilized extensive 
fault injection to demonstrate that their infrastructures are fault- 
tolerant. Some have undergone testing in which the user kills 
processes from the command line, but few have gone beyond 
using crash and hang failures to validate functionality. As our 
experiments have shown, injections into the text segment, 
registers, and heap were required to see correlated failures, 
error propagation, corrupted checkpoints, and system failures. 

9 Conclusion 
This paper has presented a series of experiments in which 

the error detection and recovery mechanisms of a distributed 
SIFT environment have been stressed through over 17,000 
error injections into a Mars Rover texture analysis program and 
the SIFT processes themselves. The results show that: 
1. Structuring the fault injection experiments to progressively 

stress the error detection and recovery mechanisms is a 
useful approach to evaluating performance and error 
propagation. 
Even though the probability for correlated failures is small, 
its potential impact on application availability is 
significant. 
The SIFT environment successfully recovered from all 
correlated failures involving the application and a SIFT 
process because the processes performing error detection 
and recovery were decoupled from the failed processes. 
Targeted injections into dynamic data on the heap were 
useful in further investigating system failures brought 
about by error propagation. Only non-pointer values were 
injected, and injections were limited to specific modules 
within the SIFT process to better trace the error effects. 
Assertions within the SIFT processes were shown to 
reduce the number of system failures from data error 
propagation by up to 42%. This suggests that detection 
mechanisms can be incorporated into the common ARMOR 
infrastructure to preemptively check for errors before state 
changes occur within the SIFT processes, thus decreasing 
the probability of error propagation and checkpoint 
corruption. 
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