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Abstract 

The use of COTS-based systems in space missions for scientific data processing is very attractive, as their 
ratio of performance to power consumption of commercial components can be an order of magnitude 
greater than that of radiation hardened components, and the price differential is even higher. A major 
problem, however, is that COTS components are susceptible to Single Event Upsets (SEU), which are 
transient errors caused by space radiation. This means that their actual use in space missions must be 
preceded by careful study on the impact of faults on system behavior and the identification of weak points 
that should be strengthened with specific software fault tolerance techniques. This paper evaluates the 
impact of transient errors in the operating system of a COTS-based system (CETIA board with two 
PowerPC 750 processors running LynxOS) and quantifies their effects at both the OS and at the application 
level. The results provide a picture of the impact of faults on LynxOS key features (process scheduling and 
the most frequent system calls), data integrity, error propagation (among application processes, from 
applications to the OS, and from OS to the application processes), application termination, and correctness 
of application results. The study has been conducted using a Software-Implemented Fault Injection tool 
(Xception) and both realistic programs and synthetic workloads (to focus on specific OS features) have been 
used. Results show that the impact of errors is very dependent on the application and on the LynxOS 
module in which they occur. A variable but significant percentage of wrong application results have been 
observed, which demonstrate that additional fault tolerance techniques are required to guarantee result 
correctness in the presence of faults. 
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1. Introduction 

The use of Commercial Off-The-Shelf (COTS) components (both hardware and software) and 
COTS-based systems in mission-critical and business-critical applications is a clear trend in the 
computer industry. They offer a real opportunity to reduce development costs and deployment 
times, which greatly explains the growing interest in using COTS components in fault tolerance 
architectures. Additionally, COTS components normally benefit from a large installation base in a 
multitude of configurations, which is often considered as an effective test in the field. 

Following this trend, the use of COTS-based systems in space missions is particularly attractive, as 
the ratio of performance to power consumption of commercial components can be an order of 
magnitude greater than that of radiation hardened components, and the price differential is even 
higher. However, in spite of all these advantages, COTS are not usually designed for the stringent 
requirements of critical applications. Furthermore, the use of hardware COTS components in space 
applications introduces new challenges, as COTS hardware components are susceptible to transient 
errors due to Single Event Upsets (SEU) caused by space radiation. This means that the actual use 
of COTS components in space missions must be preceded by careful study of the impact of faults 
on system behavior and the identification of weak points that should be strengthened with specific 
software fault tolerance techniques. 

The Remote Exploration and Experimentation (REE) Project at NASA’s Jet Propulsion Laboratory 
was aimed at bringing COTS-based systems into space. The idea of REE project is to use a set of 
on-board COTS-based parallel processors for onboard scientific data processing [Some 991, 
enabling new classes of scientific missions and reducing the need for ground station operations 
through limited bandwidth communication links. 

One key aspect behind the REE project is that the high-performance COTS-based systems are used 
for scientific data processing and not for spacecraft control. An external, radiation-hardened and 
independently protected Spacecrafi Control Computer (SCC) is responsible for control, and it is 
also the overall controller of REE - sending it commands and tasks to execute. The SCC sits at the 
top of a fault-recovery hierarchy. It is responsible for detecting if the REE has ceased to provide 
results. It can provide a gross, last-ditch, repair function if it observes that REE is no longer 
responding or providing reasonable outputs. It is empowered to command self-tests of processor 
nodes and links, to unpower faulty nodes, and to reload and cold start the REE system. Of course, 
if this gross procedure must be invoked, processing outages in the order of tens of minutes will 
ensue. Therefore it is necessary to recover from a large majority of transient errors much more 
quickly within the REE system itself in order to provide acceptable system availability. 

Other fault-injection studies by Ravi Iyer at UIUC based on fault-insertions into real REE 
applications and the supporting software implemented fault-tolerance middleware have shown that 
very high, but not perfect coverage in error recovery is possible, but this work did not include error 
insertions into the OS kernel. Their work simulated kernel failures by inducing crashes and hangs 
into various nodes and tabulating the response. 

The emphasis of this work is on the system behavior when errors are induced into the operating 
system - looking at application termination, data integrity, and correctness of application results. 
This paper evaluates the impact of transient errors in the operating system of the REE testbed 
(CETIA board with two PowerPC 750 processors running LynxOS) and quantifies their effects at 
both the OS and at the application level. The results provide a picture of the impact of faults on 
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LynxOS key features (process scheduling and the most frequent system calls), data integrity, error 
propagation (among application processes, from applications to the OS, and from OS to the 
application processes), application termination, and correctness of application results. Both realistic 
programs and synthetic workloads have been used. The frrst ones are meant to evaluate the impact 
of faults on application termination and result integrity while synthetic workloads focus on the 
evaluation of specific OS features in the presence of faults. 

A Software-Implemented Fault Injection tool [Xception 001 has been used to emulate the effects of 
SEU through the insertion of bit-flip errors in processor structures (registers, integer unit, internal 
processor buses, floating point unit, cache, etc) and memory whilst the OS is running. Faults have 
been injected using different distributions. Typically, a uniform distribution over time and location 
was used but we also have injected faults directly in specific locations and at specific moments 
(e.g., faults inserted into the registers when the processor is executing code from a given LynxOS 
call) to evaluate the impact of specific faults in the LynxOS behavior and try to identify their 
effects on applications programs or SIFT middleware that may be running. 

The structure of the paper is as follows: the next section presents the experimental setup used in 
this study. Section 3 presents the different experiments and discusses the results and Section 4 
summarizes the contributions and concludes the paper. 

2. Experimental setup 

2.1 

Figure 1 shows the test bed layout used in these experiments. The target system is a COTS CETIA 
board with two PowerPC 750 processors and 128 Mbytes of memory, running Lynx operating 
system version 3.0.1. The host machine is a Sun UltraSparc-I1 with SunOS 5.5.1. 

Target system and Xception fault injector 

CETL4 boards 
tl&%iI=m PowerPC 750 

L y d S  3.01 
* e 

Sun UltraSparc-II 
SunOS 5.5.1 - 

rrtll- 

Figure 1 - Test bed layout 

The fault-injection tool is Xception PowerPC705/LynxOS, which is a port of the Xception tool 
[Carreira 981 to the PowerPC705 processor architecture and LynxOS. Xception uses the debugging 
and performance monitoring features available in the processors to inject faults by software and to 
monitor the activation of the faults and their impact on the target system behavior. The target 
applications are not modified for the injection of faults and the applications are executed at full 
speed. Faults injected by Xception can affect any process running on the target system, and in this 
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work, we focus on the kernel code. Table 1 shows the target fault locations and basic fault triggers 
and fault/error types of Xception. 

Operand load from a specified address 
Operand store to a specified address 
After a specified time since start-up 
A combination of the above 

Stuck-at-zero 
Memory Management Unit (MMU) 
Internal Data Bus (IDB) 
Intemal Address Bus (JAB) 

Bit mask (32 bits) 
Number of bits to be changed 

Table 1 - Xception fault locations, fault triggers, and faulfferror types. 

The definition of the faults parameters, injection process, and collection of results is controlled by 
the host system. The key steps of the fault injection process are shown in Figure 2. The target 
system is restarted after each injection to assure independent experiments. Faults are injected after 
the workload start and, depending on the type of trigger, faults are uniformly distributed over time 
or are injected during the execution of specific portions of code. The collection of results (the 
actual location in the code where the fault was injected, the processor context at that moment, etc, 
which are stored in a small log in the target) is done after resetting the system to assure that the 
system is stable and can send the results to the host. 

Average execution Collect of results 
time + tolerance from previous fault 

f h  Time 

t t  t t t 
Reset target Start Reset Start 

system workload target workload 
system 

Figure 2 - Typical injection run profile 

2.2 Fault model 

Faults injected consist of single bit-flips injected in all the possible units that can be reach by 
Xception. The distribution over location is uniform and during the post-injection analysis we can 
isolate the faults in a given location, if needed. One important location (concerning space 
applications) that cannot be reached by Xception is the processor cache (for both the instruction 
and the data cache). However, faults in cache can be partially emulated by faults injected in the 
memory, provided that these faults affect memory areas where the processor is executing code or 
accessing te data, which can be easily achieved with the Xception fault triggers. 

The fault triggers have been set up to insert a uniform distribution of faults over time and to inject 
faults when the processor is executing specific code. Uniform distribution of faults over time is 
particularly relevant because it matches the expected distribution of SEU whilst the OS is running. 
On the other hand, faults injected in specific locations, such as the code of specific operating 
system calls, are very important to evaluate the behavior of the operating system in the presence of 
specific faults. 
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2.3 Workload 

2.3.1 Synthetic workload 

As one major goal of this study is the evaluation of the impact of transient faults on key features of 
the operating system (LynxOS), we decided to define a synthetic workload in order to exercise 
core functions of the operating system such as the ones related to processes (schedule, create, kill, 
process wait), memory (attribute memory to a process, free memory), and inputloutput (open, read, 
write). The synthetic workload executes a given number of iterations and in each iteration of the 
cycle it starts by doing some buffer and matrix manipulations, just to use memory resources that 
will be checked for integrity later on, and then executes a number of system calls related to the core 
OS functions mention above (e.g., fork, kill, wait, open, read, write, etc). After each step, the 
program stores a footprint in a file. For example, after each system call the program stores the 
return code in the file; after each checksum calculation (performed over all data structures and 
application code) stores the value of the checksum, etc. At the end of each cycle interaction the 
program executes additional tests and at the end of the program the final result stored in the file 
(Le., all the footprints) is compared with a golden version to check if any of the individual step 
outputs were wrong. The amount of memory allocated from heap for buffer manipulations is 1 
Mbytes and the matrices manipulations (multiplication and other simple manipulations) are 
performed on three matrices of 250 x 250 integers define as static variables. 

Three instances (each instance is a different process) of this synthetic program are used to test the 
effect of the kernel error on other processes in a multiprogramming environment. The first one (PI) 
is the one that is going to be used to inject faults. That is, faults are injected (in processor register, 
integer unit, memory, etc) during the execution of P1 code or during the execution of kernel code 
(either kernel code called by PI or other system code). The processes P2 and P3 are used as 
“miner’s canaries” to evaluate error propagation from PI to P2 or P3 (through the operating 
system) and the operating system response after a fault (section 3 presents in detail all the aspects 
evaluated using this configuration). Here we are concerned that OS errors may compromise the 
virtual address space or affect the process scheduler so that subsequent processes are not properly 
started. Figure 3 illustrates this scheme. 

4 4 4 

Faults in 
application 

Faults in 
kernel 

CETIA PowerPC 750 board 
I I 

Figure 3 - Process configuration with the synthetic workload 

2.3.2 Realistic workloads 

The use of realistic workloads is particularly relevant to the evaluation of the effects of OS errors 
in order to study aspects such as application termination and result correctness in the presence of 
faults. Due to bureaucratic difficulties, we could not use real REE applications code, so programs 
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of a similar nature were substituted. Thus we choose three applications with quite different profiles 
concerning processor and memory needs, use of I/O system calls (especially disk read and write), 
and size of the results, in order to evaluate the influence of these aspects on the impact of the faults. 
The workloads are the following: 

Gravity: Calculates the trajectory of mass (e.g. a satellite) attracted by a bigger one (e.g. a 
planet), modeled by Newton’s Gravity Law. 

PI: Computes the value of A (with a large number of decimal digits) by numerically calculating 
the area under the curve 4/( l+X 2). 

Matmult: Matrix multiplication program. In our experiments it multiplies two 400 x 400 
integers and two 400 x 400 floating-point matrices. 

3. Results and analysis 

Since the general objective of this study (to observe the effects of transient faults on a COTS-based 
system) comprises the evaluation of the impact of faults on key aspects/components of the system, 
we have organized different sets of experiments aimed at covering the most relevant facets of the 
problem. In short, the goals of these experiments are the following: 

Experiments using the Synthetic Applications: 
- Evaluate the impact of faults injected while the processor was executing OS code 

associated with synthetic process PI on the system behavior and on the OS ability to 
execute core functions related to processes, memory, and inputloutput (section 3.1.1). We 
have used a synthetic workload to be sure that all these OS fbnctions are heavily used. 

Evaluate the impact of faults inserted while the processor was executing code of the 
synthetic application process P1 and compare the effects of application faults vs. OS faults 
(section 3.1.2). 

Evaluate the OS capability to confine errors to the memory and execution context of the 
process affected by the fault (section 3.1.3). In other words, the goal in this case is to 
evaluate the error propagation from OS to application processes and from one process to 
the others. 

- 

- 

Experiments using Realistic Applications: 
- Evaluate the impact of faults on application termination and the correctness of the 

application results (section 3.2). In this case, we have used realistic programs and uniform 
faults distributions to emulate as close as possible the effects of SEU errors in that occur 
when real applications and their associated OS functions are executing. 

3.1. Impact of faults in the OS and error confinement & propagation: experiments with the 
synthetic workload 

In this set of experiments we used the synthetic workload in the scenario shown in Figure 3 (three 
processes running: P1, P2, and P3). We have concentrated primarily on faults injected while P1 
was scheduled and when the processor was executing OS code, for example from a system call 
called by P1 (for simplicity, we call these faults as OS faults or faults injected in kernel mode). 
However, in order to get a more complete picture and observe the differences between OS faults 
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and application faults, we also injected faults while the processor was executing P1 code (again, for 
simplicity, we call these faults as application faults or faults injected in user mode). To achieve 
this we defined fault triggers in the P1 code space and in the OS code, particularly in the code of 
system calls related to core functions (e.g., system calls such as fork, kill, wait, open, read, write, 
etc). We have also injected faults using uniform distribution over time to get results from faults 
injected in other OS code. A significant number of faults (233 faults) injected with uniform 
distribution over time were injected while the processor was executing OS code not directly related 
to user processes, namely while the OS was in its idle loop (we will analyze these faults further 
on). A small number of faults were injected in other processes and are not used in the analysis. 

Table 2 shows the fault distribution by process and Table 3 shows the fault distribution by target 
unit. In the latter case, the number of faults injected in each unit was weighed with the relative 
sizes of the silicon areas of the corresponding processor structure, measure (in an approximate 
way) in the processor die image. The faults injected in the memory were meant to emulate faults in 
the processor cache, as mentioned before. 

Table 2 - Fault injected with the synthetic workload: distribution by processes 

Table 3 - Fault injected with the synthetic workload: distribution by unit 

The analysis of results in this section is mainly focused in the 2013 faults injected while P1 was 
scheduled (first line of Table 2), which correspond to 1038 faults injected in kernel mode (i.e., OS 
faults) and the 975 fault injected in user mode (i.e., application faults). 

Figure 4 shows the impact of the faults injected while PI was scheduled (2013 faults) from the 
point of view of the process P1 only (Le., disregarding the impact on the other processes). Both the 
impact of OS faults and P1 faults are represented, in order to facilitate the comparison and 
correlation of results observed for each case. 

The classification of failure modes is the following: 

OS crush - The fault crashed the system and it has to be restarted by a hard-reset. 

Application hung - The fault caused the application (P1 in this case) to hang, possibly due 
to an erroneous infinite loop. 
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Abnormal application termination - In this case the application process terminated in an 
abnormal way, either because the return code is abnormal or because the LynxOS 
terminated the application. Xception records the error codes in order to know what kind of 
mechanism has detected the error (note that in addition to the inherent error detection 
mechanisms in the system, P1 includes a routine to detect corruption in the memory 
structures and Plcode). 

No impact - The fault has no visible impact on the system: the application P1 terminated 
normally and the results produced were correct. 

Wrong results - The fault caused the application to produce wrong results and no errors 
have been detected. 

60% 

40% 

20% 

10% 

0% 

Detected app. Level 

Kernel mode User mode H Kernel mode (1038 fault! 

OS crash Application hang Abnormal app. No impact Wrong results 
Termination 

Figure 4 - Impact of faults injected while P I  was scheduled (disregarding the impact on the other 
processes) 

Figure 4 also shows whether the cause of abnormal termination of PI has been detected at the OS 
level or at the application level (small chart inside the oval). Even more details about the actual 
error detection mechanism that caused the abnormal termination of the application are presented in 
Table 4. All these results will be discussed for OS faults and application faults in the subsequent 
sections. 

A general observation on the results presented in Figure 4 is that a large percentage of faults (more 
than half for both OS and application faults) had no effect, because the state that was modified was 
unused or was soon-to-be overwritten. This is consistent with what has been found by others [Arlat 
93, Karlsson 98, Madeira 941. 

The following sections present and discuss the results obtained for the faults that caused some 
impact in program execution. 
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Kernel mode User mode Error detection 
#faults I Y' #faplb I % , 

I I 

Table 4 - Error detection details for faults injected while P I  was scheduled and caused abnormal 
application termination (and disregarding the impact on the other processes). 

3.1.1 Faults injected while executing OS code 

We observe that OS faults tend to either crash the system (29.5%) or cause no impact (57.3%). A 
fair percentage of OS faults caused errors that can be detected by the OS or by the application 
(9.9% total: details about the actual mechanism that detected the error can be seen in Table 4) and 
only a very small percentage of faults caused the application P1 to hang (2.0%) or to produce 
wrong results (1.3%). Since the Software Implemented Fault Tolerance (SIFT) techniques of REE 
were designed to handle crashes and detected errors in applications, we view these as relatively 
benign outcomes. The last case is the only that causes concern, as the application produces wrong 
results but there is no way to warn the end-user on that fact, as nothing wrong has been detected in 
the system. Effective applications-based acceptance checks are needed to improve coverage of 
application errors. 

Another interesting aspect is related to the analysis of the faults injected when the OS was in its 
idle loop. There are 233 of these faults (see Table 2) from the set of faults injected with uniform 
distribution over time. The results are represented in Figure 5. As we can see, the impact of these 
faults is quite clear: they either crash the system or have no impact at all. As mentioned before, this 
is relatively easy to solve with the SIFT approach of REE that has been particularly designed to 
handle crashes. 
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50% 

40% 

30% 

20% 

10% 

0% 
OS crash Application Abnormal app. No impact Wrong results 

hang Termination 

Figure 5 - Impact of faults injected while the processor was executing the OS idle loop (233 faults) 

Table 5 shows a breakdown of the results for OS faults that have been injected while the processor 
was executing specific LynxOS system calls or internal functions. In general, LynxOS calls are 
compatible with Posix system calls, which makes Table 5 easy to understand. 

Concerning the faults that caused wrong results, we can see that most of them have been injected 
when the processor was executing system calls related to file access, especially write,clos eJd, and 
stat. Another interesting observation is that faults injected during the execution of the fork system 
call are particularly prone to crash the system (more than half). 

Mem - Detection of memory corruption (by the application memory checking routine) 
OS call - Error code returned by OS call to the application 
OS - Error detected by the OS (and the OS killed the application) 

Table 5 - Impact of faults injected while P I  was executing specific kernel functions (1038 faults) 

Figure 6 show the impact of OS faults for different units inside the processor. It’s worth noting that 
faults in the cache are emulated in an approximately way trough faults in the memory in specific 
areas where the processor is most likely to be executing code or accessing to data. 
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25% 4 I 
I I  

20% 

15% 

10% 

5% 

0% 
OS crash Application Abnormal app. No impact Wrongresults 

hang Termination 

Figure 6 - Impact of OS faults injected in different processor units. 

One evident conclusion is that the impact of faults is very dependent on the specific processor area 
affected by the fault. It is interesting to note that the general purpose registers (GPR) have the 
highest percentage of faults with no impact, which suggest that uniform distribution of bit-flip 
errors in the GPR could lead to optimistic results. A more detailed observation of the Xception 
database has shown that only faults in some registers have caused evident impact, which result 
from the non-uniform way programs (and compilers) use the GPRs. 

Although we don't have space in the paper to show the tables obtained when we cross tables 5 and 
6 (i.e., impact for faults injected in specific system calls and in specific processor units), the 
observation of the Xception database have shown that the most dangerous combinations 
concerning the production of wrong results consists of faults injected in the processor data and 
address bus while executing code of the write system call and faults injected in the cache while the 
processor is executing the closefa. 

3.1.2 Faults injected while executing application code 

Application faults follow a quite different pattern in many aspects, when compared to OS faults. 
Two evident observations are that application faults tend to produce higher percentages of wrong 
results (6.1%) and cause a much smaller percentage of system crashes (1.2% in this case). The first 
one shows that application faults are more dangerous than OS faults (in fact, OS faults tend to 
crash the system which avoids the production of wrong results). The second observation suggests 
that LynxOS was not able to protect itself from a mad application, as some faults (although in a 
small percentage) injected when the processor was executing application code cause the OS to 
crash. 

A close analysis of the Xception log' on the application faults that caused the OS to crash has 
shown that most of these faults correspond to faults that affected registers used to pass parameters 
of OS calls (interestingly, most of these faults were injected in the data bus and address bus, and 
not in the registers directly). This is consistent with previous work from CMU and LAAS on OS 
robustness testing [Siewiorek 93, Koopman 97, Salles 99, Fabre 991 where tools like Ballista and 

' The Xception log stores the exact location in the code of the instruction under execution when the fault was injected 
(and a configurable number of instructions) and the processor context in the moment of the injection. 
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Mafalda have shown that erroneous OS calls parameters can crash the OS. The use of wrappers to 
filter these erroneous parameters can potentially solve these weak points and make the OS to 
behave in an acceptable way in the presence of bad-behaved applications. This would tum the 
1.2% of application faults in Figure 4 into errors detected by the OS and returned to the calling 
application. 

It is worth noting that LynxOS is fairly robust, as it has detected 24.2% of the injected faults just 
because these faults have corrupted the arguments of system calls (see Table 4), and the OS has not 
handled only 1.2% of the injected faults correctly (note that these percentages are absolute, i.e., 
relative to all the application faults). These results also show that for the application PI (and 
remember that P1 uses OS calls very heavily) the percentage of faults typically addressed by 
robustness testing correspond to 25.4% (sum of both values) of the application faults. Handling 
these faults correctly, and enhancing the detection of other kind of error by the OS, is quite positive 
for a quick recovery of the application (as the OS has not crash). 

3.1.3 Study of error propagation 

A failure mode classification that specifically addresses the error propagation is shown in Table 6. 

Classification 

Svstem crash 

Application damage 

Error propagation 

No impact 

Description 
All the processes (applications) have crashed. The OS have to be rebooted. 

The process P1 (the target application) has been affected somehow but all the other processes (P2 and 
P3 in our case) executed completely and produced correct results. That is, the damages were confined 
to P1. The following damages are. considered: 

No results have been Application crash - The process P1 (the target application) crashed. 
produced by P 1. 
Errors detected - Errors have been detected at the application level. Following types are 
considered: 

- Memory consistency checks: the application memory space has been corrupted; 
- OS call error: system calls executed by the application have returned an error. 
- Application terminated by OS 

Wrong results: The application terminated normally (no errors detected) but produced incorrect 
results. 

Faults injected when P1 is scheduled affected at least one of the other applications (P2 and P3 in our 
case) but the system did not crash. The following types are considered: 

Other application crash: The application crashed. No results have been produced by the 
application. 
Errors detected in other application: Errors have been detected at the application level. The 
same types above. 
Wrong results in other application: Other application terminated normally (no errors detected) 
but produced incorrect results. 

All the applications terminated normally and produced correct results. 

Table 6 - Failure mode classification for study of error propagation. 

Figure 7 shows a breakdown of the results of OS and application faults, breaking out the effects of 
error propagation between processes and the effects of application damage. 

The error propagation for OS and application faults is quite different. While only 1.0% of the OS 
faults propagate to the other processes P1 and P2, the percentage observed for application faults is 
4.4%. The manual inspection of these faults (from the Xception log) has shown different error 
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propagation scenarios, but most of them consist of faults injected in the memory (but trying to 
simulate faults in the cache) and faults that have corrupted parameter of OS calls. 

A very important aspect concerning the error propagation caused by application faults is that most 
of the propagated errors have been detected by these applications or by the OS. Only 3 out of 975 
application faults and 6 out of 1038 OS faults have escaped the error detection and caused the other 
applications (P2 and P3) to produce incorrect results. Figure 7 also shows the error mechanisms in 
P2 and P3 

I System crash Error B/ropa&on ApplicatioAdamage h i m p a c t  

lication 
age detail 

(1038 faults) (975 faults) 

Figure 7 - Impact of faults injected while P I  was scheduled 

The relatively small percentage of faults that caused error propagation and wrong results suggests 
the SIFT approach of REE can in fact handle the vast majority of faults. The error propagation, 
however, even when the errors are detected, cause increased error latency and recovery time and 
force the recovery of multiple applications. Improved mechanisms to help confining the errors to 
the application affected by the faults are necessary. 

The percentage of faults whose damage was confined to P1 is very high for the application faults 
(43.4%). This means that LynxOS does a good job in confining the errors to the application that is 
directly affected by the fault. Furthermore, as most of these faults have been detected (36.8%), thus 
suggests that these kind of faults can be recovered effectively using the SIFT approach of REE. 
Table 7 shows the details on the error detection mechanisms for both OS faults and application 
faults. 
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Kernel mode 
#faults 1 % 

Error detection User mode 
#faults] Y. 

SIGSEGV (segment violation) I 11 1 1.1% 1 1 I 0.1% OS level 
SIGSYS (bad arg. to system call) 1 0 1  0.0% I 222 I 22.8% 

Memory corruption 
Error code returned by OS call 
Other error codes 
Error codes not defined 
SIGTRAP (trace mode) 
SIGBUS (bus error) 

Application level 

0 0.0% 79 8.1% 
35 3.4% 18 1.8% 
12 1.2% 2 0.2% 
0 0.0% 3 0.3% 
1 0.1% 27 2.8% 

40 3.9% 4 0.4% 

Table 7 - Error detection details for faults that caused damage confined to PI. 

SIGPIPE (write on a pipe with no one to read) 
Unknown error code 

Total coverage 

3.2 Workload termination and correction of application results: experiments with the 
realistic workloads 

0 0.0% 0 0.0% 
0 0.0% 3 0.3% 
99 9.5% 359 36.8% 

Analyzing combined OS and application faults for synthetic applications is not particularly useful, 
because the relative effects of each are very dependent upon the relative fractions of time spent 
executing applications and OS code. And this may vary widely for different real applications. 

Gravity 
PI 
Mabnult 

This is subtle and requires an explanation. In REE, most state of non-running processes is in 
second-level cache or main memory. This is protected by error correcting codes and thus relatively 
immune to transient errors. Most exposure to SEUs therefore comes in the processor or 
surrounding circuitry, which are devoted to running processes. 

Therefore the following experiments use random fault-injection into the processor. The goal is to 
analyze the impact of faults on application termination and the correctness of the application 
results. To achieve this we used realistic workloads (although the programs used are simple, they 
are similar to REE real programs) and injected faults following a uniform distribution over time 
and processor location, as this is the best way to emulate the effects of real SEU faults. 

36 (5.7%) 589 (94.3%) 625 
626 (99.6%) 3 (0.4%) 629 
1277 (99.3%) 9 (0.7%) 1286 

Table 8 - Distribution of the faults injected in the realistic workloads 

The experiments with the different applications are independent from each other (i.e., only one 
application was running each time). Table 8 shows the distribution of the faults. Faults injected in 
user mode means that the faults have been injected when the processor was executing code from 
the application and faults injected in kernel mode means that the processor was executing OS code. 
The distribution of the faults among the different processor units is similar to the one presented in 
Table 3. 
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As we can see from Table 8, the profile of the applications plays an important role on the fault 
distribution. Faults injected when the application is computing results tend to affect application 
code while fault injected during I/O periods tend to affect operating system code (mainly open, 
write, and read functions). In order to clarify this point, Table 9 shows the key aspects of the 
profile of the applications. As we can see, the profile of the Gravity application is very different 
from the other applications, as this application spends most of the time writing the results into disk 
(the computation time is less than one second). This is why most of the faults (94%) have been 
injected in OS code. The patterns for the other applications are very different, especially for the PI 
application where the I/O activity can be neglected. 

Gravity 
PI 
Matmult 

-1 24 1.01 Mbytes 
-17 Neglected 53 bytes 
-22 -2 24.04 Kbytes 

60% 

50% 

40% 

30% 

20% 

10% 

0% 
System crash Application hang Abnormal app. Correct results Wrong results 

termination 

PI 

W Gravity 

0 Matmult 

Figure 8 - Impact of faults on application termination and correctness of results. 
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Gravity application follows a pattern similar to the synthetic application (the only exception is for 
the “application hang” results). As we saw in Table 9, this application spends most of the time 
writing the results to disk and this is why most of the faults have been injected in kernel mode. 

The percentages of faults that caused abnormal application termination observed in the realistic 
applications are clearly lower than the ones in the synthetic application. Note that abnormal 
termination means that some error has been detected, either at OS or application level. The 
application profile, again, seems to play an important role, as the percentages or errors detected are 
quite different for the three applications. When comparing these results to the ones from the 
synthetic application we should take into account that the synthetic application also includes the 
test of the memory structures and code of the application, which does not exist in the realistic 
applications. 

Table 10 shows details on the different error detection mechanisms that originated the abnormal 
termination. The detection of erroneous arguments in OS calls (by the OS) is the mechanism with 
higher coverage, which confirms the results observed in the experiments with the synthetic 
workload that suggests that LynxOS is fairly robust. 

Error detected by OS 
(OS level detection only: the OS 

Table 10 -Abnormal application termination details. 

4. Conclusions 

In this paper we evaluated the impact of faults in a COTS system for scientific data processing in 
space applications. The target system was a COTS CETIA board with two PowerPC 750 running 
LynxOS, and the study has been conducted using a Software-Implemented Fault Injection tool 
(Xception). The faults injected have been defined in order to mimic the effects of SEU in the 
processor intemal units as much as possible. The faults were distributed in a uniform way 
concerning processor location and both uniform distribution over time and faults in specific 
locations of the OS code have been used. Two types of workloads have been used: a synthetic 
workload to exercise core functions of the operating system such as the ones related to processes, 
memory, and input/output, and three realistic programs similar to the REE applications. 

The results provide a picture of the impact of faults on LynxOS key features such as the ability to 
continue execution of the processes after a fault, data integrity (tested through a specific memory 
test routine), error propagation (among application processes, from applications to the OS, and 
from OS to the application processes), application termination, and correctness of application 
results. The following observations are particularly relevant: 

OS faults are the best to deal with, since tend to crash the system or cause no visible impact at 
all. As SIFT systems are designed for crash recovery, this conclusion supports the idea that 
most of the faults can be tolerated by use of SIFT techniques. 
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Applications fault results imply that assumptions of fail silent used by many researchers are 
inadequate. In fact a variable but quite significant percentage of application faults caused 
wrong results and no error have been detected to worn the user that the results were not correct. 
More research is needed into application-based acceptance checking to achieve coverage 
consistent with highly dependable systems 

Applications with intensive calculations and few OS calls are more likely to produce wrong 
results in the presence of faults than applications that use OS calls in an intensive way (these 
ones tend to crash the system or cause no impact). Results obtained with realistic workloads 
show quite clearly the effect of the application profile on the failure modes. 

The LynxOS is quite effective in confining the errors to the process directly affected by the 
fault. However, small percentages of propagated errors have been observed (from 1% to 4.4%). 
The higher percentages of error propagation happened for application faults, which suggests 
that improved application based error detection is necessary. 

For most of the faults that caused error propagation, the propagated errors have been detected 
in the other applications, which suggests that these kind of faults could be recovered effectively 
using the SIFT approach of REE. 

The LynxOS seems fairly robust, as most of the faults that cased erroneous parameters in OS 
calls have been detected by the OS. However, a small percentage of these faults were not 
detected, which shows that additional wrappers could improve even further the robustness of 
LynxOS. 

Future work will include the analysis of the results obtained for faults already injected but that 
could not be included in this paper for space reasons. Other types of faults such as burst faults that 
affect many bits at the same time are also relevant for space missions. Other applications with more 
processes and tight communication and synchronization will also be analyzed in order to 
understand better the most relevant error propagation factors. 
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