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Abstract 
We introduce a general type of optimization 
algorithm which infers data models relating two 
different but intertwined types of information 
about each of a set of objects. A novel clustering 
problem is solved by formulating an objective 
function which is optimized. For the 
optimization of an objective function describing 
a general classification problem we use a clocked 
objective function update scheme. As a concrete 
example we apply the clustering algorithm to 
geological data (rocks) to infer the spatial as well 
as mineral relationships within a field geology 
model. We test the algorithm with synthetic data 
generated according to a particularly chosen 
probability distribution function. 

1. Introduction 
Clustering algorithms are dependent on the presence of 
features which distinguish among the data. These features 
can be mathematically represented as feature vectors. 
Clustering of feature vectors can be done in a variety of 
ways such as K-means (Duda, Hart, & Stork, 2000), EM 
for mixture models (Bishop, 1995), and hierarchical 
clustering algorithms (Williams, 2000). Common to these 
algorithms is the fact that all features are treated 
equivalently in the joint feature space. 

In this work we present a unifying clustering method that 
allows features to be treated heterogeneously. We 
introduce a clustering algorithm for mutually constraining 
heterogeneous features, applicable to a variety of 
classification problems. Without loss of generality we 
consider the case of feature vectors consisting of two 
heterogeneous feature domains. We will show that this 
class of “mixed” feature vectors can be successfully 
clustered by our method where standard clustering 
algorithms, represented by EM for mixture models, fail. 

In Section 2 we explain the underlying theory of our 
clustering algorithm by giving an example application. 
We derive the appropriate constrained optimization 

problem for inferring, in this case, geological 
relationships from observed data (about rocks) in the form 
of an objective function, and define the optimization 
procedure using a clocked objective function update 
scheme. In Section 3 we show the results of numerical 
simulations for the example application. We end with 
conclusions and a discussion about future work in Section 
4. 

2. Theory 

The fmt  step of our clustering method is to formulate an 
objective function which is to be optimized, describing 
mathematically the clustering problem. In order to 
optimize the objective function the derivatives with 
respect to each optimization variable are calculated. In 
our case clocked objective functions (Gold, Rangarajan, 
& Mjolsness, 1996) and Soft-assign techniques 
(Rangarajan, Gold, & Mjolsness, 1996; Rangarajan, 
Yuille, Gold, & Mjolsness, 1997; Rangarajan, Yuille, & 
Mjolsness, 1999) are employed for the optimization of the 
objective function. We will illustrate our algorithm by 
giving an example drawn from geological planetary 
surface exploration (Mjolsness, Davies, Castaiio, Lou, & 
Fink, 2000). 

2.1 Rock-Patch-Facies-Deposit Model 

In our current study we look at selected geological 
processes in a Martian environment. Starting from what a 
rover can actually observe, we deploy a geological model 
of how rocks are dispersed from a few sources into many 
separate locations. Rocks from the same source (e.g., 
impact crater ejecta, volcanic deposition, flood channels) 
form deposits. The rocks within each deposit are spatially 
clustered into patches. In addition to belonging to a patch, 
each rock also belongs to a class based on its mineral 
composition and morphology, called a facies. A deposit 
contains one or more facies. Each patch within a deposit 
contains the same ratio of rocks from the facies 
represented in the deposit, e.g., 70% of facies A and 30% 
of facies B. These relationships between deposits, 
patches, facies, and individual rocks are summarized in 
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the rock-patch-facies-deposit model (RF’F’D model), 
depicted in Figure 1. We stress that this model is a 
generalized form of classification, relating the distribution 
of individual clasts to each other to derive the 
compositional (facies) and spatial (patches) relationship 
within the deposits under study. A classification result 
can then be compared to other geologic distributions at 
other locations on Mars. 
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Figure 1. RFTD model, describing the relationships between 
deposits, patches (location), facies (mineral composition and 
morphology), and individual rocks (location + mineral 
composition and morphology). Single-headed arrows represent 
one-to-many relationships, while the double-headed arrow 
represents a many-to-may relationship. In the center of the 
figure two deposits are depicted: the first deposit consists of a 
single patch containing one facies, while the second deposit 
consists of two patches, containing three facies. 

The distribution of patch locations in a deposit, rock 
locations in a patch, and mineral composition vectors 
within a facies are all taken to be Gaussian here for 
simplicity. Based on this scenario, an objective function 
can be derived (see 2.2). Observable parameters such as 
rock location, shape, clast size, and spectra can be used to 
invert the model, estimating the extent and composition of 
surface deposits and identifying the corresponding 
geological formation processes (fluvial, impact, volcanic, 
aeolian). 

2.2 Objective Function 

From the above described geological model we derive an 
appropriate constrained objective function for inferring 
geological relationships from observed data (in this case 
rocks). The function to be optimized is: 

subject to the following constraints: 

A B L 
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where F : membership matrix of facies 1 in deposit a (the 
key many-to-many relationship which expresses the 
“intertwining” of mineral and spatial information); P : 
membership matrix of patch b in deposit a; R :  
membership matrix of rock i in patch b; Q : membership 
matrix of rock i in facies 1; y ,  : spatial location of center 
of deposit a; wb: location of center of patch b; cf,: 
composition vector for facies I ;  xi : observed spatial 
location of rock i ;  c i :  observed composition of rock i ;  
fi,...,p5 : rewardpenalty weights. 

These constraints are enforced by adding the following 
entropy ( -TS) and Lagrangian-multiplier (4 ,vi, y i )  
terms to the objective function: 

a=O b d  b=O i=l 

The overall objective function E is the sum of the 
partial objective functions: 

E = E , + E , + E 3 .  
An essential difference between our algorithm over, e.g., 
EM for mixtures of Gaussians, is the fourth-order PRQF 
term which allows information from the mineral 
clustering and the two-level spatial clustering 
subproblems to interact and mutually constrain one 
another. 

2.3 Clustering Algorithm and Optimization Process 

To perform the constrained optimization we use 
deterministic annealing with clocked objective functions 
and Soft-assign, converging to a fixed point as shown in 
the following pseudo-algorithmic excerpt: 
T = T-max; 
energy = EvalEnergy(parameters,T) ; 
while ( T > T-min ) I1 main deterministic annealing loop 

UpdateDepositMeans(parameters) ; 11 y-a 

UpdateFaciesMeans(parameters) ; 11 cf-1 
UpdatePatchMeans(parameters); 11 psi-b 

UpdateDepositPatchMemberships(parameters,T); /I P 
UpdatePatchRockMemberships(parameters,T); I1 R 
UpdateFaciesRockMemberships(parameters,T); 11 Q 
UpdateDepositFaciesMemberships(parameters,T); 11 F 
11 anneal temperature 
T = T * T-rate; 
energy = EvalEnergy(parameters,T); 



The necessary update equations for the algorithm are 
derived by setting the partial derivatives of the objective 
function E with respect to each variable to 0: 

3. Results 

To demonstrate the algorithm we show an example using 
three deposits, nine patches, and three six-dimensional 
facies. 

3.1 Generation of Synthetic Data Sets 

The rocks together with their respective facies, the patch 
centers, the facies centers, and the deposit centers are 
generated from 1-D Gaussian distributions for each 
dimension (two dimension for x- and y-spatial 
coordinates, six dimensions for facies). The variances we 
used are as follows: deposit-center-variances=lO.O, patch- 
center-variances=3.0, facies-center-variances=10.0, rock- 
location-variances=0.3, and rock-facies-variances= 1 .O. 

3.2 Simulation Results 

Figures 2 and 3 show the simulation results for an 
example synthetic data set generated using the above 
variances. In Figure 2a the results of the RPFD-algorithm 
group the data into the same deposit and patch clusters as 
the source data labels. Figure 3a shows the clustering 
results in the mineral domain, where the facies are 
correctly labeled. The EM algorithm clusters only in the 
joint spatial and mineral feature space, thus leading to an 
incorrect clustering result as depicted in Figures 2b and 
3b for the spatial and mineral domains, respectively. 

4. Discussion 

We have introduced a clustering method using clocked 
objective functions and Soft-assign techniques to optimize 
an appropriately formulated objective function, that 
allows clustering between mutually constraining 
heterogeneous features. In our study the heterogeneous 
features are spatial and mineral features with which the 
relationships within a geological rock-patch-facies- 
deposit model are inferred. We demonstrated the 
algorithm using synthetic data generated according to the 
rock-patch-facies-deposit data model. We further showed 
that standard clustering algorithms such as EM fail to 
cluster correctly in the joint feature space. 
Since the optimal choice of the rewardpenalty weights 
p,,...,p5 must be determined we used a simulated 
annealing based algorithm to obtain an optimized set of 
weights. As criteria for the quality of the weight set we 
employed two measures: (1) we calculated the normalized 

sum of the smallest Euclidian differences between the 
original and the nearest calculated deposit means, patch 
means, and facies means; (2) we computed a confusion 
matrix for each type of label (deposit, patch, and facies) 
and determined the best assignment of original class 
labels to estimated classes obtained with our algorithm. 
The score for each label type is given by the percentage of 
correct rocks. 
Future work would look at the scalability of our method 
and would examine the performance on more complicated 
tasks, e.g., one deposit completely embedded in another. 
In the absence of ground truth information (e.g., knowing 
the generating means and variances of the involved 
distributions) cross-validation could be used to determine 
the optimal rewardpenalty weights (Smyth, 1996). 

At a deeper analytical level, that is, for scientific 
interpretation of the observed (and now classified) facies, 
mathematical models of physical processes can be used to 
invert the distribution of materials to create the original 
(pre-process) distribution and quantify the strength of the 
process itself. One illustrative example may be the 
mapping of the ejecta around a simple impact crater. The 
rock-patch-facies-deposit model allows the different 
concentrations and ejecta sizes to be put into classes, and 
the resulting distributions both mineralogical and physical 
(e.g. distribution of clast sizes, degree of shock) can be 
used within the model of crater formation and ejecta 
emplacement to determine original stratigraphy and 
mineralogy. 
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Figure 3. a) calculated RPFD-clusters - mineral domain - corresponding with source data labels; b) calculated 
EM-clusters - mineral domain - incorrectly clustering source data labels. The first two dimensions of the six- 
dimensional facies feature vectors are plotted. 




