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1. Objective 

NASA's Jet Propulsion Laboratory (JPL) managed by the California Institute of Technology is 
currently investing in ways to improve its ability to increase the cost estimation accuracy early in 
the project life cycle. The need to perform top-down cost and effort estimation for software 
projects with reasonable accuracy is of paramount importance to future and ongoing work at 
JPL. In response, both the JPL Costing Office and the Software Quality Improvement Project 
are emphasizing greater use of cost estimation tools and historical data to improve the accuracy 
of software cost estimates as well as the incorporation of cost uncertainty. The literature supports 
the use of cost estimation models to perform such top-down estimates especially when based on 
an organization's own historical data. [4, 5 ,  6, 91 Many well known software cost estimation 
models such as COCOMO 11, SEER-SEM and PRICE S advocate local calibration to improve 
accuracy over the initial built-in calibration that are typically performed over a broad range of 
industry data. [1, 2, 8, 101 However, it is the initial objective of this study to determine the 
viability of three commonly used software cost estimation models - COCOMO IT, SEER-SEM, 
and PRICE S - prior to any local calibration. 

Section 2 will provide a brief description of the three models being evaluated. Section 3 contains 
the details of the research team's methodology. The descriptioiis of each project in the study are 
detailed in Section 4. Overall, relevant analysis and summary results will be presented in 
Section 5 .  Finally, conclusions and recommended future work will be discussed in Sections 6. 

2. The Models 

2.1 Overview 

Software cost estimation models are a means of top-down estimation of future project effort 
based on characteristics that are known earlier in the lifecycle. The models discussed below 
have several similarities. First is a basic measure of size. The models accommodate either source 
lines of code (SLOC) or function points (FPs) or both as a measure of project size. Second is the 
mathematical form of the statistical models. Categorically the models can be thought of a 
specific instantiation of the basic equation E = A*SizeB*EM where E is effort, A is a constant 
that reflects a measure of the basic organizational/technology costs, B is a scaling factor of Size 
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and EM is a group of effort multipliers that measure environmental factors used to adjust effort 
(E). The set of factors comprising EM are commonly referred to as cost drivers because they 
adjust the final effort estimate up or down thus driving the cost accordingly. Third, all the models 
discussed here are of a multiplicative form. This means that the niargins for error in the 
estimates are expressed as a percentage. Therefore, large projects will have a larger variance in 
dollars than smaller projects when estimated using these models. Next, the models are similar in 
that they all account for the notion there exists an optimal schedule for the project as described 
by the model inputs. As the actual schedule for a project is factored into the model’s estimate 
the cost/effort is raised or lowered appropriately based on the discrepancy between the proposed 
schedule and the schedule the model believes is optimal. It is important to note that this cost 
increase may be reflected as a reduced estimate of the likelihood of success at a given cost. 
Finally, all the models accommodate a decomposition of the project into logical sub parts. This 
facilitates the common case where different parts of an over all project have different 
characteristics. For example, one portion of the project’s system may have low complexity with 
average programmers implementing it while another part may be highly complex with very 
talented programmers. Statistically, the combination of these different parts for reasonably 
accurate estimates is nontrivial. Simply averaging the inputs from various parts of the project and 
allowing the model to treat all parts of its system equally will produce wildly inaccurate 
estimation results. This will be demonstrated in the data of this study where DSl was treated as 
a single estimation element and then properly decomposed and treated as a composition of 
differing project parts. The former produces an outlying data point that bears no resemblance to 
the estimate using decomposition. However, the estimate based on decomposition produces 
error rates within tolerances when compared to other projects in the study. 

2.2 COCOMO I1 

COCOMO I1 is a model developed by Dr. Barry Boehm that helps you “reason about the cost 
and schedule implications of software decisions you may need to malte.”[2] The COCOMO I1 
cost estimation model is used by thousands of software project manager and is based on a study 
of hundreds of software projects. “Unlike other cost estimation models, COCOMO I1 is an open 
model, so all of the details are published.”2 There are actually variations of the model, one for 
early software design phases and one for later software development phases. The amount of 
information available during the different phases of software development varies and COCOMO 
I1 incorporates this by reducing the number of cost drivers required for input during the early 
design phase of development versus the post architecture phases. 

2.3 SEER-SEM 

“SEER-SEM is a tool for software estimation, planning and project control.”[8] This model 
offers a sophisticated interface for building up the data in the model hierarchically by “rolling- 
up” user defined Computer Software Configuration Items (CSCIs) that have been modeled. In 
addition to various model output features such as Defined Reports and Charts, SEER-SEM 
makes use of Knowledge Bases (KBases). KBases are complete or partial sets of default inputs 
for the model. Each KBase is associated with a software industry sector (Le. Aerospace-Missile 
and Unmanned Airborne, Application-Device Driver, etc.. .). The user may select an appropriate 
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KBase when little is known about the software project characteristics with respect to the input 
parameters. The KBase provides an estimate of the industry sector average for each parameter in 
the KBases set as input to the model. The user may then modify the inputs to customize the 
KBase to the organization’s project(s). SEER-SEM offers the user the capability to specify these 
cost drivers as a range of input values when knowledge exists about a model parameter as well as 
the degree to which it may vary. Finally, SEER-SEM offers interoperability with a number of 
other useful software applications. 

2.4.PRICE S 

PRICE S estimates the costs and schedules of software projects. It handles a wide array of 
software projects types varying sizes from component level software to highly complex systems. 
This model has the ability to estimate the project as whole or in parts. It takes into account such 
things as development, modification, and life cycle costs. As with the other models, software size 
is a critical input and PRICE S provides sizing applications to aid in the determination of size, 
but unlike COCOMO 11, this model is a closed model. Similar to SEER-SEM knowledge bases, 
PRICE S supplies industry-average values for actual input data that has not yet been specified or 
is unknown at the time of the estimate. A difference between PRICE S and other models is that 
it uses a productivity factor called PROFAC to capture the skill levels, experience, efficiency, 
and productivity of an organization. PROFAC tends to be consistent within an organization but 
is a very sensitive parameter. Although typical values for various applications are provided by 
the PRICE S User’s Manual, it is essential to calibrate an organization’s PROFAC value before 
accurate cost estimates can be made. 

3. Methodology & Approach 

3.1 .Data Collection 

There exist a significant overlap between the input data required for COCOMO I1 and SEER- 
SEM. Therefore, questionnaires that were originally designed for COCOMO 11 input data 
collection were reviewed and adapted for use in an effort to collect SEER-SEM data 
simultaneously. The revised survey was subsequently used in interviews with key software 
people of the various projects described below. (See Section 4) The similarity of SEER-SEM 
and COCOMO 11 parameterdcost drivers facilitated the ability to map survey answers (data) to 
both models. The cost drivers in the PRICE S model were not as easily mappable between the 
drivers from COCOMO I1 and SEER-SEM, although an attempt was made to translate the data 
between models. 

The survey instrument asked the key software people to rate their piece of the project in various 
categories, from team capabilities, software reliability, complexity, and tool usage. Multiple (2- 
3) interviewers participated in each of the interviews conducted. Then interviewers compared 
notes taken during the interviews and cost driver ratings derived from conversation with the 
interviewee. All cost driver-rating discrepancies were resolved though discussion between the 
interviewers providing rationale. Discrepancies were noted and, when appropriate, ranges were 
formed for input parameters when full resolution could not be reached. Using the results from 
these interviews along with historical data, the models’ inputs were entered into the associated 
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implementation tools (software) for each. Follow-up interviews were conducted as necessary for 
the purpose of data conflict resolution and clarification with regard to project scope and CSCI 
applicability. Past projects were selected in order that actual cost and effort data could be 
collected to compare with the estimates produced by the models. 

3.2.Analysis 

The software implementations of the COCOMO 11, PRICE S, and SEER-SEM cost estimation 
models were used to semi-automate the analysis of the data collected. The data, in the form of 
each model’s cost drivers, was entered into to the models and analyzed in an “as-is” form for a 
reasonableness check. Based on the results of this early analysis, the data was reviewed for 
consistency, and follow-up interviews were conducted to ensure that the research team’s 
understanding of the context and specifics of the survey data were consistent with the 
interviewee’s understanding. In some case secondary resources were consulted in the form of 
data from previous studies/activities and alternate key personnel to ensure a coherent global 
perspective of data pertaining to specific subsystems and CSCIs in relation to overall project and 
organization data. 

3.2.1. Assumptions 
The next phase of the analysis involved the identification of model input data that was 
consistently estimated too high or too low by interviewees across all projects studied. 

The research team concluded that data values collected during interviews pertaining to JPL 
project software’s Complexity and Required Reliability ratings are downwardly biased by JPL 
personnel. The rating, which can range from “Very Low” to “Very High,” of complexity and 
required reliability given by interviewees were inadvertently discussed and measured in the 
context of flight software at JPE during the interviews. JPL personnel tended to rate these 
factors too low because, when compared to the industry at large, “Nominal” complexity and 
“Nominal” required reliability for spacecraft software is far higher than the average for software 
being developed throughout the industry. That is to say flight software for spacecraft 
categorically has a higher required reliability and complexity. The models’ view of a “Nominal” 
rating for these inputs did not account for this. This adjustment may be viewed as the beginnings 
of local calibration for the models examined though parameter adjustments. 

3.2.2. Adjustments’ 

Fault protection code was largely auto-generated. Therefore, these lines of code are 
counted differently from non-auto-generated code. The effort related to fault protection 
was “backed out”. 
Some projects had management separated out as a separate category, which had to be 
reallocated back to the various project elements, such as ACS, CDH, Nav, etc. This was 

Some data had to be scrubbed. Specifically: 

Each model includes different activities in their effort prediction. In addition, each model defines its labor 3 
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done by calculating the percentage of effort each project element represented, and then 
allocating that percentage of management back to it. Also, the effort for subcontracted 
software elements was taken out, such as a remote agent for one of the projects. 
For Project 1, software elements that utilized automatic code generation were backed out 
of the effort total. Management effort was then allocated back based on the percentage of 
overall effort that each element represents. 
The projects were sized in deliverable source lines of code (all lines of code except 
comments and blanks), while the models take logical lines of code as input. Therefore, 
the size of each project was reduced by 25%. [7] 

0 

The following adjustments to the model estimates were justified and documented. 
I .  Actual effort was adjusted by allocating management and support effort to SW elements 

based on its overall percentage of the total effort being managed. 
2. COCOMO I1 provides three levels of estimates - optimistic, most likely, and pessimistic. 

The “most likely estimate” is presented and used in calculation of the magnitude of 
relative error. (See Table 3 & Table 4) 

3 .  The effort estimate for “system requirements” was backed out of the final SEER 
estimates since our actuals did not include much of this activity. Also system integration 
(integration between hardware and software) for flight software was book kept separate 
from other software development activities and was therefore taken out of the 
SEER-SEM and PRICE S estimates. 

4. A percentage of CM, QA, Management, and QA were taken out of the COCOMO I1 and 
SEER-SEM estimates. Many of these activities were performed, although informally. 
The percentage taken out of the estimate was to account for the formal activities being 
book kept elsewhere. 

5 .  The effort estimate for the following labor categories was taken out of the PRICE S 
estimates: CM and QA (PRICE S defines these activities as formal activities that are 
book kept elsewhere at a higher level). Design and programming was usually done by 
the same person - the programmers - therefore a percentage of design was also backed 
out of the PRICE S estimate. 60% of Program Management/System Engineering was 
also taken out of the estimate. PRICE S’s definition for these labor categories include 
some overall program and system-level efforts that our actuals did not include. 

6.  The effort for the following phases was also excluded from the PRICE-S estimate: 
Concept, System Requirements, Hardware/Software Integration, and Field Test. 

The initial effort estimates prior to making the adjustments discussed above are presented in 
Table 1 and Table 2. These estimates can be compared with Table 3 and Table 4. A first-time I 
user with little experience with cost models would probably not know to make the adjustments 
necessary to make the estimates comparable. The estimates in Table 3 and Table 4 are properly I 
adjusted to activity and labor categories that are accounted for in actual effort so that they can be 
evaluated accurately. 
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TABLE 1. UNADJUSTED6 FLIGHT SOFTWARE ESTIMATES 

TABLE 2. UNADJUSTED6 GROUND SOFTWARE ESTIMATES 

The models were rerun over the newly adjusted data set, the results of which are present 
throughout the remainder of this paper. 

4. The Projects Studied 

4.1. Projects 

Both flight software and ground software are examined, but due to the inherently dissimilar 
characteristics of each, our analysis focuses on each type of software separately. Data from 
elements of five flight software projects from JPL were collected for a total of ten flight software 
data points (two of the data points are a sum up of the project's smaller software pieces). There 

All effort estimates and actuals are presented in Work-Months. Actuals have been adjusted by allocating 

%MRE (percent magnitude of relative error) = (/Estimate - Actual/ / Actual) * 100 
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are not many flight software projects that are conducted in-house at JPL; most are contracted out. 
There are nine ground software data points from eight JPL projects. Due to confidentiality 
considerations each software project will be referred to as projects 1-19. Projects 1-10 are flight 
software projects. The remainder (1 1-19) are ground support software projects. 

4.1.1, Flight Sofbvare 
Projects 1-2 are subsystems in a planetary missioii that will, among other things, perform 
multiple in-flight encounters in the course of multi-year mission. Projects 1 and 2 Flight 
Software is onboard (the spacecraft) software. The segments of the software that were examined 
in this study are: 

Attitude Control Subsystem 
Command and Data Subsystem 

Projects 3-7 are related in that projects 5-7 are in fact individual subsystems of a project that was 
also analyzed as a “rollup” in project 4 and as a single logical system unit in project 3. That is to 
say that the data was studied both as many individual segments within the project and as an 
overall effort. These software projects (3-7) are “the first of a series of NASA missions that will 
demonstrate and validate advanced technologies to develop a baseline framework for future 
spacecraft and missions.” The segments that were studied individually were a: 

Flight System Control Subsystem 
Attitude Control Subsystem 
Navigation and Control Subsystem 

Project 8 was a NASA discovery mission, whose goal was to conduct a low-cost space 
exploration, while highlighting some new break-through technologies, and rapid spacecraft 
development concept using modern re-engineering processes. The success of Project 8’s mission 
was used to validate NASA’s initiatives for more efficient mission development. Project 9 was 
the flight software for an onboard instrument in an Earth orbiting mission. Project 9 uses a 
rotating dish antenna with two spot beams that sweep in a circular pattern. The instrument on the 
satellite is a specialized weather-sensing device. Project 10 is flight software for a spacecraft 
involved in a scientific space mission. 

4.1.2. Ground Software 
Projects 11-13 are ground based software systems for earth orbiting missions. The initial 
estimates provided by the models for these projects were highly inaccurate. The research team 
argues that this is indicative of a highly irregular set of circumstances surrounding these three 
projects that may be reconciled in the future work. The Project 11 mission was lost well before 
completion the software effort. Subsequently Project 13 was initiated which leveraged almost in 
its entirety, the uncompleted effort of Project 11. Finally, during Project 13, the same project 
team that was developing Project 11 was employed to develop Project 12. Project 12 was in 
essence a continuation and upgrade of the Project 11 mission. Currently the discrepancy 
between the actual cost and effort and the estimations provided by the models appears to be an 
allocation anomaly within the JPL data. Its is unclear at this time how the effort and reuse 
factors from these three highly related projects which experience significantly atypical lifecycles 
is allocated within the data and whether that allocation is appropriate for the purposes of a top- 
down estimation through the use of cost estimation models. Typically, inputs would be given to 
a model and it would be asked to produce an estimate with the presupposition that the project 
would be attempted with the goal of completion. To reconcile this anomaly for calibration 
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purposes the team must reconstruct a scenario of what the allocation with the JPL data would 
have been for each project if they were initiated under reasonably typical JPL circumstances @e. 
if Project 11 was not lost prematurely). 

Projects 14-19 are six ground software data points consisting of subsystems from a larger ground 
based software system. They primarily relate to monitor and control and telemetry processing 
functions. 

5. Results 

5.1. Outliers 

Project 3, represented by triangles in Figure 2, Figure 3, Figure 4, and Figure 5 is a potential 
outlier for all cases. Looking at Projects 5-7 software as one overall product produced overly 
high estimates from the actual effort, whereas breaking down software into smaller elements and 
then rolling up the effort (Project 4) generates estimates that are more accurate. This is 
consistent because smaller pieces can be developed concurrently and larger software projects 
tend to have lower productivity rates. 

The Project 1 and Project 2 data points, represented by the star-shaped points, can also be 
considered as outliers for they were developed prior to the NASA initiative for more efficient 
software development. These projects were often underestimated by the models. 

Other outliers are the projects 11, 12, and 13, represented in the figures by squares. The models 
greatly overestimated their costs. The unique circumstances of these projects’ development are 
discussed in Section 4.1.2. 

5.2. Flight Software Results 

TABLE 3. ADJUSTED7 FLIGHT SOFTWARE ESTIMATES 

The outputs of the models have been adjusted by taking out any labor categories and activity phases not included 7 

in the JPL actual effort. 
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Comparison of  Uncalibrated Models’ 
Accuracy for Flight Software 

Figure 1. Comparison of Uncalibrated Models‘ Accuracy for Flight Software 

The flight software model estimates in work-months and their percent magnitude of relative error 
(%MRE) for COCOMO 11, SEER-SEM, the SEER-SEM knowledge bases (using only the 
knowledge bases and minimal inputs - SLOC, and no parameter inputs) and PRICE S are 
presented in Table 3. Figure 1 graphically shows the deviations from actuals of each project for I 
each cost model. Circles are the projects that are within 30% of actuals; Xs are those that are 
more than 30% from actuals. The star-shaped points on Figure 2, Figure 3, Figure 4, and Figure 
5 represent Projects 1 and 2 and are atypical in comparison to the remaining data points as 
discussed in Section 5.1. The triangular point was Project 3. (See 5.1 .) Project 3 versus Project 
4 was used as a sanity check. The analysis of Project 3 data point as a single piece of software is 
misrepresentative of the actual project development environment. The results from the model 
runs, including the knowledge base run show that it is better to break a project down into smaller 
segments to develop better cost estimates. 
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Cocomo II Flight Software Estimates vs. 
Actual Effort 
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Figure 2 .  COCOMO I1 F l i g h t  Software E s t i m a t e s  vs. Actual E f f o r t  

On average, the COCOMO I1 model underestimates effort by a mean magnitude of -27%. (See 
Table 5 )  A paired difference test between the COCOMO estimates and the actuals result in a 
t-value of -1.5 1 indicating that we cannot reject the null hypothesis - that the model estimates are 
not different froin the actuals. Without calibration, COCOMO I1 is accurate to within 30% of 
actual effort 40% of the time for flight software, while a study performed by Daly for AFIT 
resulted in precalibration estimates for REVIC,8 PRICE S, and SEER-SEM within 30% of 
actuals no more than 33% of the time [4]. Thus, the unadjusted COCOMO I1 outperformed the 
results from the commercial models for the JPL flight environment. 

The SEER-SEM model tends to overestimate more than it underestimates (See Figure 3). On 
average the SEER-SEM model overestimates effort by 30%. SEER-SEM cannot be rejected 
with a t-value on paired two sample for means of 1.44. (See Table 5 )  SEER-SEM with no 
calibration was accurate to within 30% of actual effort 40% of the time for flight software. 
SEER is also outperforming results from commercial cost models for the JPL flight environment. 

The Air Force Cost Analysis Agency's computerized variant of COCOMO 
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SEERSEM Flight Software Estimates vs. 
Actual Effort 
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Figure 3 .  SEER-SEM F l i g h t  Sof tware  E s t i m a t e s  vs.  A c t u a l  E f f o r t  

A paired difference analysis of the knowledge base-only estimates for flight software against the 
actual effort shows that the model cannot be accepted. Using only the SEER-SEM knowledge 
bases provided generates estimates that tend to be much higher than the SEER-SEM estimates 
with parameter inputs. The knowledge bases overestimate effort by an average of 105%, which 
is the highest mean magnitude of relative error (MMRE) of the models being compared. The 
knowledge bases generate estimates that have a large error rate despite the outliers mentioned 
above. (See Figure 4) Using only the knowledge bases produces estimates that are within 30% 
of actual effort only 20% of the time for flight software. This is very poor performance. The 
tests on a knowledge base-only model are not meant to disprove the validity of the knowledge 
bases, but rather to show that knowledge bases should not be used as the sole basis of an 
estimate. The SEER-SEM knowledge bases can be valuable tools if used properly and in 
conjunction with cost driver inputs to fill in unknown parameters. 
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SEERSEM Knowledge Base Estimates 
for Flight Software vs. Actual Effort 
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Figure 4 .  SEER K n o w l e d g e  Base E s t i m a t e s  f o r  F l i g h t  Sof tware  vs. A c t u a l  
E f f o r t  

A paired difference experiment shows that PRICE S also cannot be rejected for flight software, 
with a t-value of 1.21 (See Table 5 ) .  PRICE S has a mean magnitude of 24%. PRICE S predicts 
within 30% of actuals 60% of the time for flight software, the strongest prediction level of the 
models being compared. This is good performaiice for an uncalibrated model. Figure 5 shows 
that Price 5 estimates have the strongest linear relationship with actuals. 

Price S Flight Software Estimates vs. 
Actual Effort 

Figure 5 .  PRICE S F l igh t  S o f t w a r e  E s t i m a t e s  vs. A c t u a l  E f f o r t  
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Project 

Actual Adjusted Adjusted Adjusted Adjusted 
Effort COCOMO COCOMO SEER SEER SEER KBase PRICES PRICE 

(adjusted) Estimate %MRE Estimate %MRE KBase %MRE Estimate %MRE 
Project 11 
Project 12 

TABLE 4 .  ADJUSTED7 GROUND SOFTWARE ESTIMATES 

681.48 1542.33 126% 3453.49 407% 9486.005 1292% 2,598.50 281 % 
455.22 1360.09 199% 2325.06 411% 6468.53 1321% 1,119.80 146% 

Comparison of Uncalibrated Models' Accuracy 
for Ground Software 

Project 13 
Project 14 

Project 16 
Project 17 
Project 18 
Project 19 

Project 15 

Kbase 
Model 

'Within Pred<.mD) Octside Precl( -303 

495.5 1061.01 114% 2242.755 353% 6240.85 1160% 840.50 70% 
631 544.05 -14% 932.46 48% 1140.01 81% 678.70 8% 
433 304.57 -30% 976.845 126% 1231.81 184% 518.10 20% 
499 477.58 -4% 1305.19 162% 1151.42 131% 632.40 27% 
128 55.05 -57% 146.77 15% 247.565 93% 213.40 67% 
58 25.1 -57% 53.315 -8% 81.19 40% 76.40 32% 

130 48.16 -63% 239.93 85% 671.27 416% 147.70 14% 

Figure 6. Comparison of Uncalibrated Models' Accuracy for Ground Software 

Ground software estimates for the models are presented in Table 4. The square points in Figure 
7, Figure 8, and Figure 9 are projects 1 I ,  12, and 13 discussed previously. (See Section 5.1) 

The COCOMO model tends to predict well for ground software, within 63% (the smallest range 
for ground software) of actuals if the outliers are ignored (See Figure 7). A paired difference 
experiment on the COCOMO I1 estimates and the actual effort results in a conclusion that the 
null hypothesis cannot be rejected. Thus cannot reject the model. (See Table 6) COCOMO I1 
overestimates on average about 24% for ground software if the outliers are included. However, 
COCOMO tends to underestimate if the outliers are ignored. The COCOMO I1 model produced 
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estimates that were accurate within 30% of actual effort oiily 33% of the time for ground 
software with the outliers. However, with outliers excluded the model predicts with 30% of 
actual effort 50% of the time. 

Cocomo II Ground Software Estimates 
vs. Actual Effort 

0 500 1000 1500 
Projects 11, 12, 13 

Actual Effort (WM) ! Other GSW Projects 

Figure 7. COCOMO I1 Ground Software Estimates vs. Actual Effort 

The SEER model and the knowledge bases overestimate the effort for ground software by a large 
percentage (See Table 4). A large t-value causes us to reject the null and accept the alternate 
hypothesis that the model estimates are significantly different than the actual effort at the 95% 
level for both SEER-SEM with parameter inputs and the knowledge base-only run. (See Table 6) 
Even excluding the three atypical ground projects, SEER overestimates effort by an average of 
72%. (See Figure 8) Only 22% of the SEER estimates were within 30% of actuals for ground 
software. None of the knowledge base-only estimates were within 30% of actuals. Surprisingly, 
throwing out the ground software outliers does not improve most test results. Only SEER-SEM 
has a small enough t-value to not be rejected if outliers are ignored. 
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1 SEER-SEM Ground Software Estimates 
I I vs. Actual Effort 
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Figure 8. SEER-SEM Ground Software Estimates vs. Actual Effort 

Price S also predicts well for ground software, within 67% of actual effort if the outliers are 
ignored. PRICE S always overestimates for ground software, by a mean magnitude of 74%. The 
PRICE S estimates are the strongest predictors of ground software costs out of all the models, 
with 44% of the estimates falling within 30% of actuals. There is a strong linear relationship 
between estimates and actuals, whether or not the outliers are ignored. (See Figure 9) However, 
throwing out the outliers will result in the model being rejected. (See Table 6) 

Price S Ground Software Estimates vs. 
Actual Effort 
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F i g u r e  9 .  PRICE S Ground S o f t w a r e  E s t i m a t e s  vs. A c t u a l  E f f o r t  
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5.4. Flight and Ground Combined 

Looking at all the data points as a whole, the COCOMO niodel and PRICE S are the only models 
in which the null (that the model estimates are not significantly different from actual effort) 
cannot be rejected. (See Table 7) With high t-values, the SEER model and the knowledge base 
estimates are significantly different from the actual effort. 

TABLE 5. FLIGHT SOFTWARE RESULTS 

Ground Software Model Estimates vs. Actual Effort 

TABLE 6. GROUND SOFTWARE RESULTS 

Mean Magnitude of Relative Error (MMRE) = CMRE/n 
Root Mean Square (RMS) = [( l/n)*C(Estimate - 
Relative Root Mean Square (RRMS) = RMS/(CActuals/n) 
Pred ( .25)  = percent of estimates that predict within 25% of actuals 
Pred ( .30)  = percent of estimates that predict within 30% of actuals 
Pearson r = linearity or relationship 
Reject the null hypothesis that Actuals are equal to Model Estimates if t-values > critical t at the 95% significance 
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Combined Flight and Ground Software Data Points 
I 

TABLE 7 .  ALL SOFTWARE DATA POINTS TEST RESULTS 

According to Ferens and Christensen, “a model’s estimate is accurate when MMRE < 0.25, 
RRMS is < 0.25, and Pred (.25) < .75.”[3] Although the models only meet one or two of these 
criteria at a time (See Table 5 ,  Table 6, and Table 7), they show promising signs for improved 
accuracy with calibration. Based on this study, various calibration options exist for the models. 
More data is required to make a definitive determination as to the calibration of COCOMO 11, 
SEER-SEM, and PRICE S. 

6. Conclusions 

JPL, because its primary focus is developing and operating deep space science missions, has 
many characteristics that make it unique from other organizations that develop software. At the 
same time, we share many things in common. Therefore, we wanted to determine whether some 
cost estimation tools could be used “right out of the box” or even if they were applicable to the 
JPL environment at all. It was found that all three of the “uncalibrated” models being evaluated 
- COCOMO 11, SEER-SEM, and PRICE S - were able to predict within siniilar ranges based on 
the measures we used to evaluate the models. On average 50% of the model estimates are 
predicting within 30% of the actuals. Given that these models are unadjusted for JPL’s local 
environment, they performed much better than we had originally expected. However, adjusting 
the models for the local environment should improve this performance. Our goal is to have a set 
of tools that are able to predict 80% of the time within 30% of the actual effort. 

There are strengths and weaknesses to all three of the models. All models predict better for 
flight software than ground software in general. COCOMO I1 has strong results for both flight 
and ground software. SEER predicts well for flight software but not as well for ground. The 
knowledge bases, if used alone, are very poor predictors of JPL software in general. PRICE S is 
the strongest predicting model for flight software and ground software. However, its prediction 
range is wider than COCOMO 11’s. In all three models, careful consideration must be made as to 
which labor and activity categories should be included. 

COCOMO I1 has fewer features but is also the easiest model to use. SEER-SEM and PRICE S 
are more sophisticated. PRICE S requires less input parameters, but it is more difficult to 
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understand how the inputs impact the estimated cost. SEER-SEM has many input parameters 
that can be confusing at times, but the user can use the knowledge bases when parameters are 
unknown. In addition, having knowledge bases gives us the possibility of creating custom 
knowledge bases that can better fit the JPL environment. All three require some training before 
they can be properly used. Training should consist of determining what labor and activities 
categories should be included or excluded and how that should be done. 

All three models show promise for viability but need “calibration” for JPL’s flight and ground 
software environment. Clearly, individual calibrations of SEER-SEM, PlUCE S, and COCOMO 
I1 for flight and ground software are needed to improve prediction level. Although the models 
predict within a reasonable range, it is our goal after adjusting the models - by either calibration 
or some other consistent method - to get 80% of the estimates within 30% of actual effort. This 
will require collecting additional data. 

As a final note, we would like to express out gratitude to NASA’s Independent Project 
Assessment Office for providing funding to enable us to work more closely with Galorath Inc. 
and PRICE Systems, LLC to calibrate their respective models to the JPL environment. 
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