
Validation of Spacecraft Software Cost Estimation Models for
Flight and Ground Systems'
Karen Lum, John Powell, Jairus Hihn

California Institute of technology/Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 9 1 109

1. Objective

NASA's Jet Propulsion Laboratory (JPL) managed by the California Institute of Technology is
currently investing in ways to improve its ability to increase the cost estimation accuracy early in
the project life cycle. The need to perform top-down cost and effort estimation for software
projects with reasonable accuracy is of paramount importance to future and ongoing work at
JPL. In response, both the JPL Costing Office and the Software Quality Improvement Project
are emphasizing greater use of cost estimation tools and historical data to improve the accuracy
of software cost estimates as well as the incorporation of cost uncertainty. The literature supports
the use of cost estimation models to perform such top-down estimates especially when based on
an organization's own historical data. [4, 5 , 6, 91 Many well known software cost estimation
models such as COCOMO 11, SEER-SEM and PRICE S advocate local calibration to improve
accuracy over the initial built-in calibration that are typically performed over a broad range of
industry data. [1, 2, 8, 101 However, it is the initial objective of this study to determine the
viability of three commonly used software cost estimation models - COCOMO IT, SEER-SEM,
and PRICE S - prior to any local calibration.

Section 2 will provide a brief description of the three models being evaluated. Section 3 contains
the details of the research team's methodology. The descriptioiis of each project in the study are
detailed in Section 4. Overall, relevant analysis and summary results will be presented in
Section 5 . Finally, conclusions and recommended future work will be discussed in Sections 6.

2. The Models

2.1 Overview

Software cost estimation models are a means of top-down estimation of future project effort
based on characteristics that are known earlier in the lifecycle. The models discussed below
have several similarities. First is a basic measure of size. The models accommodate either source
lines of code (SLOC) or function points (FPs) or both as a measure of project size. Second is the
mathematical form of the statistical models. Categorically the models can be thought of a
specific instantiation of the basic equation E = A*SizeB*EM where E is effort, A is a constant
that reflects a measure of the basic organizational/technology costs, B is a scaling factor of Size

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the 1

National Aeronautics and Space Administration.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

1

and EM is a group of effort multipliers that measure environmental factors used to adjust effort
(E). The set of factors comprising EM are commonly referred to as cost drivers because they
adjust the final effort estimate up or down thus driving the cost accordingly. Third, all the models
discussed here are of a multiplicative form. This means that the niargins for error in the
estimates are expressed as a percentage. Therefore, large projects will have a larger variance in
dollars than smaller projects when estimated using these models. Next, the models are similar in
that they all account for the notion there exists an optimal schedule for the project as described
by the model inputs. As the actual schedule for a project is factored into the model’s estimate
the cost/effort is raised or lowered appropriately based on the discrepancy between the proposed
schedule and the schedule the model believes is optimal. It is important to note that this cost
increase may be reflected as a reduced estimate of the likelihood of success at a given cost.
Finally, all the models accommodate a decomposition of the project into logical sub parts. This
facilitates the common case where different parts of an over all project have different
characteristics. For example, one portion of the project’s system may have low complexity with
average programmers implementing it while another part may be highly complex with very
talented programmers. Statistically, the combination of these different parts for reasonably
accurate estimates is nontrivial. Simply averaging the inputs from various parts of the project and
allowing the model to treat all parts of its system equally will produce wildly inaccurate
estimation results. This will be demonstrated in the data of this study where DSl was treated as
a single estimation element and then properly decomposed and treated as a composition of
differing project parts. The former produces an outlying data point that bears no resemblance to
the estimate using decomposition. However, the estimate based on decomposition produces
error rates within tolerances when compared to other projects in the study.

2.2 COCOMO I1

COCOMO I1 is a model developed by Dr. Barry Boehm that helps you “reason about the cost
and schedule implications of software decisions you may need to malte.”[2] The COCOMO I1
cost estimation model is used by thousands of software project manager and is based on a study
of hundreds of software projects. “Unlike other cost estimation models, COCOMO I1 is an open
model, so all of the details are published.”2 There are actually variations of the model, one for
early software design phases and one for later software development phases. The amount of
information available during the different phases of software development varies and COCOMO
I1 incorporates this by reducing the number of cost drivers required for input during the early
design phase of development versus the post architecture phases.

2.3 SEER-SEM

“SEER-SEM is a tool for software estimation, planning and project control.”[8] This model
offers a sophisticated interface for building up the data in the model hierarchically by “rolling-
up” user defined Computer Software Configuration Items (CSCIs) that have been modeled. In
addition to various model output features such as Defined Reports and Charts, SEER-SEM
makes use of Knowledge Bases (KBases). KBases are complete or partial sets of default inputs
for the model. Each KBase is associated with a software industry sector (Le. Aerospace-Missile
and Unmanned Airborne, Application-Device Driver, etc.. .). The user may select an appropriate

http:llwww.softstarsystems.comloverview. htm 2

2

http:llwww.softstarsystems.comloverview

KBase when little is known about the software project characteristics with respect to the input
parameters. The KBase provides an estimate of the industry sector average for each parameter in
the KBases set as input to the model. The user may then modify the inputs to customize the
KBase to the organization’s project(s). SEER-SEM offers the user the capability to specify these
cost drivers as a range of input values when knowledge exists about a model parameter as well as
the degree to which it may vary. Finally, SEER-SEM offers interoperability with a number of
other useful software applications.

2.4.PRICE S

PRICE S estimates the costs and schedules of software projects. It handles a wide array of
software projects types varying sizes from component level software to highly complex systems.
This model has the ability to estimate the project as whole or in parts. It takes into account such
things as development, modification, and life cycle costs. As with the other models, software size
is a critical input and PRICE S provides sizing applications to aid in the determination of size,
but unlike COCOMO 11, this model is a closed model. Similar to SEER-SEM knowledge bases,
PRICE S supplies industry-average values for actual input data that has not yet been specified or
is unknown at the time of the estimate. A difference between PRICE S and other models is that
it uses a productivity factor called PROFAC to capture the skill levels, experience, efficiency,
and productivity of an organization. PROFAC tends to be consistent within an organization but
is a very sensitive parameter. Although typical values for various applications are provided by
the PRICE S User’s Manual, it is essential to calibrate an organization’s PROFAC value before
accurate cost estimates can be made.

3. Methodology & Approach

3.1 .Data Collection

There exist a significant overlap between the input data required for COCOMO I1 and SEER-
SEM. Therefore, questionnaires that were originally designed for COCOMO 11 input data
collection were reviewed and adapted for use in an effort to collect SEER-SEM data
simultaneously. The revised survey was subsequently used in interviews with key software
people of the various projects described below. (See Section 4) The similarity of SEER-SEM
and COCOMO 11 parameterdcost drivers facilitated the ability to map survey answers (data) to
both models. The cost drivers in the PRICE S model were not as easily mappable between the
drivers from COCOMO I1 and SEER-SEM, although an attempt was made to translate the data
between models.

The survey instrument asked the key software people to rate their piece of the project in various
categories, from team capabilities, software reliability, complexity, and tool usage. Multiple (2-
3) interviewers participated in each of the interviews conducted. Then interviewers compared
notes taken during the interviews and cost driver ratings derived from conversation with the
interviewee. All cost driver-rating discrepancies were resolved though discussion between the
interviewers providing rationale. Discrepancies were noted and, when appropriate, ranges were
formed for input parameters when full resolution could not be reached. Using the results from
these interviews along with historical data, the models’ inputs were entered into the associated

3

implementation tools (software) for each. Follow-up interviews were conducted as necessary for
the purpose of data conflict resolution and clarification with regard to project scope and CSCI
applicability. Past projects were selected in order that actual cost and effort data could be
collected to compare with the estimates produced by the models.

3.2.Analysis

The software implementations of the COCOMO 11, PRICE S, and SEER-SEM cost estimation
models were used to semi-automate the analysis of the data collected. The data, in the form of
each model’s cost drivers, was entered into to the models and analyzed in an “as-is” form for a
reasonableness check. Based on the results of this early analysis, the data was reviewed for
consistency, and follow-up interviews were conducted to ensure that the research team’s
understanding of the context and specifics of the survey data were consistent with the
interviewee’s understanding. In some case secondary resources were consulted in the form of
data from previous studies/activities and alternate key personnel to ensure a coherent global
perspective of data pertaining to specific subsystems and CSCIs in relation to overall project and
organization data.

3.2.1. Assumptions
The next phase of the analysis involved the identification of model input data that was
consistently estimated too high or too low by interviewees across all projects studied.

The research team concluded that data values collected during interviews pertaining to JPL
project software’s Complexity and Required Reliability ratings are downwardly biased by JPL
personnel. The rating, which can range from “Very Low” to “Very High,” of complexity and
required reliability given by interviewees were inadvertently discussed and measured in the
context of flight software at JPE during the interviews. JPL personnel tended to rate these
factors too low because, when compared to the industry at large, “Nominal” complexity and
“Nominal” required reliability for spacecraft software is far higher than the average for software
being developed throughout the industry. That is to say flight software for spacecraft
categorically has a higher required reliability and complexity. The models’ view of a “Nominal”
rating for these inputs did not account for this. This adjustment may be viewed as the beginnings
of local calibration for the models examined though parameter adjustments.

3.2.2. Adjustments’

Fault protection code was largely auto-generated. Therefore, these lines of code are
counted differently from non-auto-generated code. The effort related to fault protection
was “backed out”.
Some projects had management separated out as a separate category, which had to be
reallocated back to the various project elements, such as ACS, CDH, Nav, etc. This was

Some data had to be scrubbed. Specifically:

Each model includes different activities in their effort prediction. In addition, each model defines its labor 3

categories and activity phases differently. Therefore, adjustments to the model effort predictions were made based
on what software development activities were included in the effort actuals, after consulting with representatives
from Galorath Inc., PRICE Systems, LLC, and the University of Southern California’s Center for Software
Engineering,.

4

done by calculating the percentage of effort each project element represented, and then
allocating that percentage of management back to it. Also, the effort for subcontracted
software elements was taken out, such as a remote agent for one of the projects.
For Project 1, software elements that utilized automatic code generation were backed out
of the effort total. Management effort was then allocated back based on the percentage of
overall effort that each element represents.
The projects were sized in deliverable source lines of code (all lines of code except
comments and blanks), while the models take logical lines of code as input. Therefore,
the size of each project was reduced by 25%. [7]

0

The following adjustments to the model estimates were justified and documented.
I . Actual effort was adjusted by allocating management and support effort to SW elements

based on its overall percentage of the total effort being managed.
2. COCOMO I1 provides three levels of estimates - optimistic, most likely, and pessimistic.

The “most likely estimate” is presented and used in calculation of the magnitude of
relative error. (See Table 3 & Table 4)

3 . The effort estimate for “system requirements” was backed out of the final SEER
estimates since our actuals did not include much of this activity. Also system integration
(integration between hardware and software) for flight software was book kept separate
from other software development activities and was therefore taken out of the
SEER-SEM and PRICE S estimates.

4. A percentage of CM, QA, Management, and QA were taken out of the COCOMO I1 and
SEER-SEM estimates. Many of these activities were performed, although informally.
The percentage taken out of the estimate was to account for the formal activities being
book kept elsewhere.

5 . The effort estimate for the following labor categories was taken out of the PRICE S
estimates: CM and QA (PRICE S defines these activities as formal activities that are
book kept elsewhere at a higher level). Design and programming was usually done by
the same person - the programmers - therefore a percentage of design was also backed
out of the PRICE S estimate. 60% of Program Management/System Engineering was
also taken out of the estimate. PRICE S’s definition for these labor categories include
some overall program and system-level efforts that our actuals did not include.

6. The effort for the following phases was also excluded from the PRICE-S estimate:
Concept, System Requirements, Hardware/Software Integration, and Field Test.

The initial effort estimates prior to making the adjustments discussed above are presented in
Table 1 and Table 2. These estimates can be compared with Table 3 and Table 4. A first-time I
user with little experience with cost models would probably not know to make the adjustments
necessary to make the estimates comparable. The estimates in Table 3 and Table 4 are properly I
adjusted to activity and labor categories that are accounted for in actual effort so that they can be
evaluated accurately.

5

TABLE 1. UNADJUSTED6 FLIGHT SOFTWARE ESTIMATES

TABLE 2. UNADJUSTED6 GROUND SOFTWARE ESTIMATES

The models were rerun over the newly adjusted data set, the results of which are present
throughout the remainder of this paper.

4. The Projects Studied

4.1. Projects

Both flight software and ground software are examined, but due to the inherently dissimilar
characteristics of each, our analysis focuses on each type of software separately. Data from
elements of five flight software projects from JPL were collected for a total of ten flight software
data points (two of the data points are a sum up of the project's smaller software pieces). There

All effort estimates and actuals are presented in Work-Months. Actuals have been adjusted by allocating

%MRE (percent magnitude of relative error) = (/Estimate - Actual/ / Actual) * 100

4

management and support effort to SW elements based on its overall percentage of the total effort being managed.

' The outputs of the models in this table have not been adjusted for activities and labor categories, as a novice user
might not know to make such adjustments. However the lines of code, an input into all the models, have been
adjusted from physical line counts to logical line counts.

5

6

are not many flight software projects that are conducted in-house at JPL; most are contracted out.
There are nine ground software data points from eight JPL projects. Due to confidentiality
considerations each software project will be referred to as projects 1-19. Projects 1-10 are flight
software projects. The remainder (1 1-19) are ground support software projects.

4.1.1, Flight Sofbvare
Projects 1-2 are subsystems in a planetary missioii that will, among other things, perform
multiple in-flight encounters in the course of multi-year mission. Projects 1 and 2 Flight
Software is onboard (the spacecraft) software. The segments of the software that were examined
in this study are:

Attitude Control Subsystem
Command and Data Subsystem

Projects 3-7 are related in that projects 5-7 are in fact individual subsystems of a project that was
also analyzed as a “rollup” in project 4 and as a single logical system unit in project 3. That is to
say that the data was studied both as many individual segments within the project and as an
overall effort. These software projects (3-7) are “the first of a series of NASA missions that will
demonstrate and validate advanced technologies to develop a baseline framework for future
spacecraft and missions.” The segments that were studied individually were a:

Flight System Control Subsystem
Attitude Control Subsystem
Navigation and Control Subsystem

Project 8 was a NASA discovery mission, whose goal was to conduct a low-cost space
exploration, while highlighting some new break-through technologies, and rapid spacecraft
development concept using modern re-engineering processes. The success of Project 8’s mission
was used to validate NASA’s initiatives for more efficient mission development. Project 9 was
the flight software for an onboard instrument in an Earth orbiting mission. Project 9 uses a
rotating dish antenna with two spot beams that sweep in a circular pattern. The instrument on the
satellite is a specialized weather-sensing device. Project 10 is flight software for a spacecraft
involved in a scientific space mission.

4.1.2. Ground Software
Projects 11-13 are ground based software systems for earth orbiting missions. The initial
estimates provided by the models for these projects were highly inaccurate. The research team
argues that this is indicative of a highly irregular set of circumstances surrounding these three
projects that may be reconciled in the future work. The Project 11 mission was lost well before
completion the software effort. Subsequently Project 13 was initiated which leveraged almost in
its entirety, the uncompleted effort of Project 11. Finally, during Project 13, the same project
team that was developing Project 11 was employed to develop Project 12. Project 12 was in
essence a continuation and upgrade of the Project 11 mission. Currently the discrepancy
between the actual cost and effort and the estimations provided by the models appears to be an
allocation anomaly within the JPL data. Its is unclear at this time how the effort and reuse
factors from these three highly related projects which experience significantly atypical lifecycles
is allocated within the data and whether that allocation is appropriate for the purposes of a top-
down estimation through the use of cost estimation models. Typically, inputs would be given to
a model and it would be asked to produce an estimate with the presupposition that the project
would be attempted with the goal of completion. To reconcile this anomaly for calibration

7

purposes the team must reconstruct a scenario of what the allocation with the JPL data would
have been for each project if they were initiated under reasonably typical JPL circumstances @e.
if Project 11 was not lost prematurely).

Projects 14-19 are six ground software data points consisting of subsystems from a larger ground
based software system. They primarily relate to monitor and control and telemetry processing
functions.

5. Results

5.1. Outliers

Project 3, represented by triangles in Figure 2, Figure 3, Figure 4, and Figure 5 is a potential
outlier for all cases. Looking at Projects 5-7 software as one overall product produced overly
high estimates from the actual effort, whereas breaking down software into smaller elements and
then rolling up the effort (Project 4) generates estimates that are more accurate. This is
consistent because smaller pieces can be developed concurrently and larger software projects
tend to have lower productivity rates.

The Project 1 and Project 2 data points, represented by the star-shaped points, can also be
considered as outliers for they were developed prior to the NASA initiative for more efficient
software development. These projects were often underestimated by the models.

Other outliers are the projects 11, 12, and 13, represented in the figures by squares. The models
greatly overestimated their costs. The unique circumstances of these projects’ development are
discussed in Section 4.1.2.

5.2. Flight Software Results

TABLE 3. ADJUSTED7 FLIGHT SOFTWARE ESTIMATES

The outputs of the models have been adjusted by taking out any labor categories and activity phases not included 7

in the JPL actual effort.

8

Comparison of Uncalibrated Models’
Accuracy for Flight Software

Figure 1. Comparison of Uncalibrated Models‘ Accuracy for Flight Software

The flight software model estimates in work-months and their percent magnitude of relative error
(%MRE) for COCOMO 11, SEER-SEM, the SEER-SEM knowledge bases (using only the
knowledge bases and minimal inputs - SLOC, and no parameter inputs) and PRICE S are
presented in Table 3. Figure 1 graphically shows the deviations from actuals of each project for I
each cost model. Circles are the projects that are within 30% of actuals; Xs are those that are
more than 30% from actuals. The star-shaped points on Figure 2, Figure 3, Figure 4, and Figure
5 represent Projects 1 and 2 and are atypical in comparison to the remaining data points as
discussed in Section 5.1. The triangular point was Project 3. (See 5.1 .) Project 3 versus Project
4 was used as a sanity check. The analysis of Project 3 data point as a single piece of software is
misrepresentative of the actual project development environment. The results from the model
runs, including the knowledge base run show that it is better to break a project down into smaller
segments to develop better cost estimates.

9

Cocomo II Flight Software Estimates vs.
Actual Effort

1000 1 900

$ 800

' 600

fi 500
.-
IC.

- -
E 400 s 300

0 200 400 600 800 1000
Actual Effort (WM) Project 3

*Other FSW Droiects

Figure 2 . COCOMO I1 F l i g h t Software E s t i m a t e s vs. Actual E f f o r t

On average, the COCOMO I1 model underestimates effort by a mean magnitude of -27%. (See
Table 5) A paired difference test between the COCOMO estimates and the actuals result in a
t-value of -1.5 1 indicating that we cannot reject the null hypothesis - that the model estimates are
not different froin the actuals. Without calibration, COCOMO I1 is accurate to within 30% of
actual effort 40% of the time for flight software, while a study performed by Daly for AFIT
resulted in precalibration estimates for REVIC,8 PRICE S, and SEER-SEM within 30% of
actuals no more than 33% of the time [4]. Thus, the unadjusted COCOMO I1 outperformed the
results from the commercial models for the JPL flight environment.

The SEER-SEM model tends to overestimate more than it underestimates (See Figure 3). On
average the SEER-SEM model overestimates effort by 30%. SEER-SEM cannot be rejected
with a t-value on paired two sample for means of 1.44. (See Table 5) SEER-SEM with no
calibration was accurate to within 30% of actual effort 40% of the time for flight software.
SEER is also outperforming results from commercial cost models for the JPL flight environment.

The Air Force Cost Analysis Agency's computerized variant of COCOMO

10

SEERSEM Flight Software Estimates vs.
Actual Effort

1200

1000

800

600

400

200

0
0 200 400 600 800 1000 1200

Actual Effort (WM) . Project 3
Other FSW projects

Figure 3 . SEER-SEM F l i g h t Sof tware E s t i m a t e s vs. A c t u a l E f f o r t

A paired difference analysis of the knowledge base-only estimates for flight software against the
actual effort shows that the model cannot be accepted. Using only the SEER-SEM knowledge
bases provided generates estimates that tend to be much higher than the SEER-SEM estimates
with parameter inputs. The knowledge bases overestimate effort by an average of 105%, which
is the highest mean magnitude of relative error (MMRE) of the models being compared. The
knowledge bases generate estimates that have a large error rate despite the outliers mentioned
above. (See Figure 4) Using only the knowledge bases produces estimates that are within 30%
of actual effort only 20% of the time for flight software. This is very poor performance. The
tests on a knowledge base-only model are not meant to disprove the validity of the knowledge
bases, but rather to show that knowledge bases should not be used as the sole basis of an
estimate. The SEER-SEM knowledge bases can be valuable tools if used properly and in
conjunction with cost driver inputs to fill in unknown parameters.

11

SEERSEM Knowledge Base Estimates
for Flight Software vs. Actual Effort

900

800

5 700

d 600
v)

1400

5 1000
E

600

400

200

i 0
0 200 400 600 800 1000 1200 1400 1600
Actual Effort (WM) Project 3

--- __ +Other FSW projects

Figure 4 . SEER K n o w l e d g e Base E s t i m a t e s f o r F l i g h t Sof tware vs. A c t u a l
E f f o r t

A paired difference experiment shows that PRICE S also cannot be rejected for flight software,
with a t-value of 1.21 (See Table 5) . PRICE S has a mean magnitude of 24%. PRICE S predicts
within 30% of actuals 60% of the time for flight software, the strongest prediction level of the
models being compared. This is good performaiice for an uncalibrated model. Figure 5 shows
that Price 5 estimates have the strongest linear relationship with actuals.

Price S Flight Software Estimates vs.
Actual Effort

Figure 5 . PRICE S F l igh t S o f t w a r e E s t i m a t e s vs. A c t u a l E f f o r t

12

Project

Actual Adjusted Adjusted Adjusted Adjusted
Effort COCOMO COCOMO SEER SEER SEER KBase PRICES PRICE

(adjusted) Estimate %MRE Estimate %MRE KBase %MRE Estimate %MRE
Project 11
Project 12

TABLE 4 . ADJUSTED7 GROUND SOFTWARE ESTIMATES

681.48 1542.33 126% 3453.49 407% 9486.005 1292% 2,598.50 281 %
455.22 1360.09 199% 2325.06 411% 6468.53 1321% 1,119.80 146%

Comparison of Uncalibrated Models' Accuracy
for Ground Software

Project 13
Project 14

Project 16
Project 17
Project 18
Project 19

Project 15

Kbase
Model

'Within Pred<.mD) Octside Precl(-303

495.5 1061.01 114% 2242.755 353% 6240.85 1160% 840.50 70%
631 544.05 -14% 932.46 48% 1140.01 81% 678.70 8%
433 304.57 -30% 976.845 126% 1231.81 184% 518.10 20%
499 477.58 -4% 1305.19 162% 1151.42 131% 632.40 27%
128 55.05 -57% 146.77 15% 247.565 93% 213.40 67%
58 25.1 -57% 53.315 -8% 81.19 40% 76.40 32%

130 48.16 -63% 239.93 85% 671.27 416% 147.70 14%

Figure 6. Comparison of Uncalibrated Models' Accuracy for Ground Software

Ground software estimates for the models are presented in Table 4. The square points in Figure
7, Figure 8, and Figure 9 are projects 1 I , 12, and 13 discussed previously. (See Section 5.1)

The COCOMO model tends to predict well for ground software, within 63% (the smallest range
for ground software) of actuals if the outliers are ignored (See Figure 7). A paired difference
experiment on the COCOMO I1 estimates and the actual effort results in a conclusion that the
null hypothesis cannot be rejected. Thus cannot reject the model. (See Table 6) COCOMO I1
overestimates on average about 24% for ground software if the outliers are included. However,
COCOMO tends to underestimate if the outliers are ignored. The COCOMO I1 model produced

13

estimates that were accurate within 30% of actual effort oiily 33% of the time for ground
software with the outliers. However, with outliers excluded the model predicts with 30% of
actual effort 50% of the time.

Cocomo II Ground Software Estimates
vs. Actual Effort

0 500 1000 1500
Projects 11, 12, 13

Actual Effort (WM) ! Other GSW Projects

Figure 7. COCOMO I1 Ground Software Estimates vs. Actual Effort

The SEER model and the knowledge bases overestimate the effort for ground software by a large
percentage (See Table 4). A large t-value causes us to reject the null and accept the alternate
hypothesis that the model estimates are significantly different than the actual effort at the 95%
level for both SEER-SEM with parameter inputs and the knowledge base-only run. (See Table 6)
Even excluding the three atypical ground projects, SEER overestimates effort by an average of
72%. (See Figure 8) Only 22% of the SEER estimates were within 30% of actuals for ground
software. None of the knowledge base-only estimates were within 30% of actuals. Surprisingly,
throwing out the ground software outliers does not improve most test results. Only SEER-SEM
has a small enough t-value to not be rejected if outliers are ignored.

14

1 SEER-SEM Ground Software Estimates
I I vs. Actual Effort

2500
h

5 ; 2000
E
d

i m c

c 1500

v)
I g 1000 .-

L a
500

0

4000

3500

$ 3000
2 2500

z 2000

fJ 1500

1000 1 500

1
w

w

I 0
0 500 1000 1500 2000 2500 3000 3500 4000

Projects 1 1, 12, 13

Other GSW Proiects
Actual Effort (WM)

Figure 8. SEER-SEM Ground Software Estimates vs. Actual Effort

Price S also predicts well for ground software, within 67% of actual effort if the outliers are
ignored. PRICE S always overestimates for ground software, by a mean magnitude of 74%. The
PRICE S estimates are the strongest predictors of ground software costs out of all the models,
with 44% of the estimates falling within 30% of actuals. There is a strong linear relationship
between estimates and actuals, whether or not the outliers are ignored. (See Figure 9) However,
throwing out the outliers will result in the model being rejected. (See Table 6)

Price S Ground Software Estimates vs.
Actual Effort

0 500 1000 1500 2000 2500 3000
Projects 1 1, 12, 13

Other GSW Projects
Actual Effort (WM)

F i g u r e 9 . PRICE S Ground S o f t w a r e E s t i m a t e s vs. A c t u a l E f f o r t

15

5.4. Flight and Ground Combined

Looking at all the data points as a whole, the COCOMO niodel and PRICE S are the only models
in which the null (that the model estimates are not significantly different from actual effort)
cannot be rejected. (See Table 7) With high t-values, the SEER model and the knowledge base
estimates are significantly different from the actual effort.

TABLE 5. FLIGHT SOFTWARE RESULTS

Ground Software Model Estimates vs. Actual Effort

TABLE 6. GROUND SOFTWARE RESULTS

Mean Magnitude of Relative Error (MMRE) = CMRE/n
Root Mean Square (RMS) = [(l/n)*C(Estimate -
Relative Root Mean Square (RRMS) = RMS/(CActuals/n)
Pred (.25) = percent of estimates that predict within 25% of actuals
Pred (.30) = percent of estimates that predict within 30% of actuals
Pearson r = linearity or relationship
Reject the null hypothesis that Actuals are equal to Model Estimates if t-values > critical t at the 95% significance

9

I O

l l

12

13

14

15

level

16

Combined Flight and Ground Software Data Points
I

TABLE 7 . ALL SOFTWARE DATA POINTS TEST RESULTS

According to Ferens and Christensen, “a model’s estimate is accurate when MMRE < 0.25,
RRMS is < 0.25, and Pred (.25) < .75.”[3] Although the models only meet one or two of these
criteria at a time (See Table 5 , Table 6, and Table 7), they show promising signs for improved
accuracy with calibration. Based on this study, various calibration options exist for the models.
More data is required to make a definitive determination as to the calibration of COCOMO 11,
SEER-SEM, and PRICE S.

6. Conclusions

JPL, because its primary focus is developing and operating deep space science missions, has
many characteristics that make it unique from other organizations that develop software. At the
same time, we share many things in common. Therefore, we wanted to determine whether some
cost estimation tools could be used “right out of the box” or even if they were applicable to the
JPL environment at all. It was found that all three of the “uncalibrated” models being evaluated
- COCOMO 11, SEER-SEM, and PRICE S - were able to predict within siniilar ranges based on
the measures we used to evaluate the models. On average 50% of the model estimates are
predicting within 30% of the actuals. Given that these models are unadjusted for JPL’s local
environment, they performed much better than we had originally expected. However, adjusting
the models for the local environment should improve this performance. Our goal is to have a set
of tools that are able to predict 80% of the time within 30% of the actual effort.

There are strengths and weaknesses to all three of the models. All models predict better for
flight software than ground software in general. COCOMO I1 has strong results for both flight
and ground software. SEER predicts well for flight software but not as well for ground. The
knowledge bases, if used alone, are very poor predictors of JPL software in general. PRICE S is
the strongest predicting model for flight software and ground software. However, its prediction
range is wider than COCOMO 11’s. In all three models, careful consideration must be made as to
which labor and activity categories should be included.

COCOMO I1 has fewer features but is also the easiest model to use. SEER-SEM and PRICE S
are more sophisticated. PRICE S requires less input parameters, but it is more difficult to

17

understand how the inputs impact the estimated cost. SEER-SEM has many input parameters
that can be confusing at times, but the user can use the knowledge bases when parameters are
unknown. In addition, having knowledge bases gives us the possibility of creating custom
knowledge bases that can better fit the JPL environment. All three require some training before
they can be properly used. Training should consist of determining what labor and activities
categories should be included or excluded and how that should be done.

All three models show promise for viability but need “calibration” for JPL’s flight and ground
software environment. Clearly, individual calibrations of SEER-SEM, PlUCE S, and COCOMO
I1 for flight and ground software are needed to improve prediction level. Although the models
predict within a reasonable range, it is our goal after adjusting the models - by either calibration
or some other consistent method - to get 80% of the estimates within 30% of actual effort. This
will require collecting additional data.

As a final note, we would like to express out gratitude to NASA’s Independent Project
Assessment Office for providing funding to enable us to work more closely with Galorath Inc.
and PRICE Systems, LLC to calibrate their respective models to the JPL environment.

References

1 . B. Boehm, Sojhvare Engineering Economics, Englewood Cliffs, New Jersey, Prentice-Hall, Inc: 198 1

2. B. Boehin, et al., S(f&vare Cost Estimation with COCOMO II, Upper Saddle River, New Jersey, Prentice Hall
PTR: 2000.

3 . D. Ferens and D. Christensen, “Calibrating Software Cost Models to Department of Defense Databases - A
Review of Ten Studies,” February 1, 1998.

4 . D. Ferens and B. Daly, “A Quantitative Comparison of Popular Software Scheduling Models,” 1991 (SPA
Conference Proceedings, vol. X, pp. SW43-SW59.

5 . D. Ferens and S. Stukes, “Software Cost Model Calibration,” The International Society of Parai?ietric Analysts
I 7Ih Annual Conzrence Proceedings, 1995, pp. SW57-SW64.

6. R. Jack and M. Mannion, “Improving the software cost estimation process,” Software Quality Maiiagement, vol.
1, 1995, pp. 245-256.

7 . D. Reifer, B. Boehm, and S. Chulani, “The Rosetta Stone: Making COCOMO 81 Estimates Work with
COCOMO II,” Crosstalk, February 1999, pp. 11-15.

8. SEER-SEM Version 5 1 and Later User’s Manztal, Galorath Incorporated, March 2000 update.

9. R. Stutzke, “Software Estimating Technology: A Survey,” CrossTalk, May 1996, Volume 9, No. 5 .

10. Your Guide to PRICE S: Estimating Cosl and Schedule of Software Development and Support, Mt. Laurel, New
Jersey, PRICE Systems, LLC: 1998.

18

