Multi-Band Quantum Well Infrared Photodetectors
Sumith V. Bandara, Sarath D. Gunapala and John K. Liu,
Jet Propulsion Laboratory, California Institute of Technology,
4800, Oak Grove Drive, Pasadena, CA 91109

The GaAs/AlGaAs based Quantum Well Infrared Photodetectors (QWIPs) afford greater flexibility than the usual extrinsically doped semiconductor IR detectors because the wavelength of the peak response and cutoff can be continuously tailored over any wavelength between 6-20 μm. The spectral band width of these detectors can be tuned from narrow ($\Delta\lambda/\lambda \sim 10\%$) to wide ($\Delta\lambda/\lambda \sim 50\%$) allowing various applications. Thus, QWIP offers multi-color infrared focal plane arrays (FPAs) by stacking different multi quantum well layers which are capable of acquiring images in different infrared bands. In this presentation, we will discuss the recent results of large format specially separated four band QWIP FPA based on a GaAs/AlGaAs materials system and its performance. In this application, instead of quarter wavelength groove depth grating reflectors, three-quarter wavelength groove depth reflectors were used to couple radiation to each QWIP layer. This technique allow us to optimize the light coupling to each QWIP stacks at corresponding pixels while keeping the pixel (or mesa) height at the same level which will be essential for indium bump-bonding with the multiplexer. In addition to light coupling, these gratings serve as a contact to the active stack while shorting the unwanted stacks.

The research described here was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration, breakthrough sensor & instrument component technology thrust area of the cross enterprise technology development program and Advanced Technology Initiative Program.
Multi-Band Quantum Well Infrared Photodetectors

Sumith Bandara

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

Sponsored by the National Aeronautics and Space Administration, breakthrough sensor & instrument component technology thrust area of the cross enterprise technology development program and Advanced Technology Initiative Program
JPL QUANTUM WELL INFRARED PHOTODETECTORS (QWIPs)

GaAs/AlGaAs BASED QWIP SPECTRUMS

GaAs/AlGaAs BASED QWIP CAN COVER A VERY BROAD INFRARED (3-25 μm) REGION

QWIPs COVER 4-20 μm WAVELENGTH REGION WITH BROAD BAND, NARROW BAND AND DUAL BAND LARGE FORMAT FOCAL PLANE ARRAYS
WHY QWIPs DO NOT WORK WITH NORMAL INCIDENT LIGHT?
640X512 FOUR BAND QWIP FPA

LIGHT COUPLING GRATINGS /
METAL CONTACTS

Band 1 = 3-5 μm
30 period MQW

Band 2 = 8-10 μm
30 period MQW

Band 3 = 10-12 μm
30 period MQW

Band 4 = 14-15.4 μm
30 period MQW

Responsivity (arb. units)

Wavelength (microns)
Destructive interference

$$2h \cos \theta = n \frac{\lambda'}{2}, \quad n = 1, 3, 5, \ldots$$

To minimize normal reflection
i.e., $\theta = 0$

$$h = \frac{\lambda'}{4}, \frac{3\lambda'}{4}, \frac{5\lambda'}{4}, \ldots$$

$$\lambda = 15 \ \mu m \ (\lambda' = \frac{\lambda}{n_{ref}})$$
$$h = 1.25 \ \mu m, \ 3.75 \ \mu m, \ldots$$

In spatially integrated 4-color QWIPs, at least $3\frac{\lambda'}{4}$ deep groves are required to isolate the each color response band
DEEP GROOVE GRATING TEST

QWIP Deep Groove Grating Test @ 2V

RESPONSIVITY (A.U.)

Wavelength (μm)

- 2.4s-2V
- 2.6s-2V
- 2.8s-2V
- 3.0s-2V
- 3.2s-2V
- 2.2l-2V
- 2.4l-2V
- 2.6l-2V
- 3.0l-2V
- 3.2l-2V

- Keep h = 2.0 μm
- Change D from 2.2 μm to 3.2 μm

- 3λ/4
DEEP GROOVE GRATING TEST

QWIP Deep Groove Grating Test
Grating Effect @2V

Grating Efficiency (a.u.)

Wavelength (μm)

2.4s-2V
2.6s-2V
2.8s-2V
3.0s-2V
3.2s-2V
2.2l-2V
2.4l-2V
2.6l-2V
3.0l-2V
3.2l-2V

Peak Wavelength (μm)

Grating Period (μm)
8-9 μm AND 14-15 μm TWO COLOR QWIP FOCAL PLANE ARRAY
7-Step Etch for Four Color FPA

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
<th>Step 7</th>
</tr>
</thead>
</table>

Note: Detailed steps and processes are not shown in the image.
Four Color QWIP Responsivity

![Four-color QWIP Normalized Responsivity Graph](image)
Four Color QWIP Photocurrent

300 K Background Photocurrent
(with f/5 Optics, Tw = 90%, 1.5V)

500 K Background Photocurrent
(with f/5 Optics, Tw = 90%, 1.5V)
Four Color QWIP Detectivity

$D^* \text{Vs T for Four-Color QWIP at } V = -1.5V$

1. $f/5$ optics at 300 K Background
2. $f/5$ optics at 500 K Background

D^* (cmHz$^{1/2}$/W) vs. temperature (K)

Temperature range: 40 to 80 K

Wavelengths: 3.5-6 μm, 8.5-10 μm, 10-12 μm, 13-15 μm