Testing Thermal Geometric Model Exchanges with STEP-TAS

Georg Siebes and Robert Hughes
Jet Propulsion Laboratory
California Institute of Technology

Aerospace PDE 2002
ESA/ESTEC
April 9-12, 2002

Outline

• What is STEP-TAS (Scope)
• What happened so far (Development)
• Where are we now (Implementation)
• Current Activity (Testing)
 – Test Purpose
 – Test Methodology
 – Test Results
• What’s next (Do it again with STEP-NRF)
What is STEP-TAS

- **STEP-TAS** = Thermal Analysis for Space

Details of STEP-TAS

- **Shapes**
 - Primitives: triangle, rectangle, quadrilateral, disc, cylinder, cone, sphere, paraboloid
 - Compound shapes
 - Shapes conform to AP203 CC4 non-manifold surfaces

- **Thermal-radiative model**
 - Associates thermal-radiative faces with surface shapes
 - Thermal mesh
 - Properties

Application Protocol for space missions and models used in thermal analysis.
Details of STEP-TAS

- Space mission aspects
 - orbit arc (Keplerian and discrete ephemeris)
 - space co-ordinate system, celestial bodies
 - orientation, general and named pointing, spinning, linear rotation rates
 - space thermal environment, including constant or lat/long dependent albedo / planetshine tables

Details of STEP-TAS

- Kinematic model conforms to STEP Part 105 for articulating rigid bodies (e.g. rotating solar arrays, gimballed antennas)
The U.S. STEP-TAS Pilot - Participants

Live Demo at NASA TFAWS Conference
NASA Standard 2817

- The NASA CIO has officially approved and released NASA-STD-2817:
 COMPUTER-AIDED ENGINEERING, DESIGN AND MANUFACTURING DATA INTERCHANGE
- Minimum interoperability standard for CAE/CAD/CAM system at NASA.
- Requires compliance with interchange standards. Tools compliant with these standards must be available.
- Preferred standards include APs 203, 209, 210, 225, and 227 for exchanging data among PDM, mechanical and electronic CAD/CAM, civil and facilities CAD, and CAE/analysis systems.
- STEP-TAS is included in draft of next revision.

STEP-TAS Implementation - April 2002
Testing Commercial Implementation

- Independent testing of STEP-TAS exchanges
- Feedback to developers and implementers
Tools

- ESARAD 4.3.3
- Thermal Desktop 4.4
- Baghera View 1.2.2
- Microsoft Windows NT

Test Methodology

- Exercise all possible permutations of exchange paths between two tools
 - ER
 - ER > STEP > ER
 - ER > STEP > TD > STEP > ER
 - ER > STEP > TD
 - TD
 - TD > STEP > TD
 - TD > STEP > ER
 - TD > STEP > ER > STEP > TD
Test Methodology

- Geometric Primitives (no sub-division)
 - Cones
 - Cylinders
 - Discs
 - Rectangles (squares)
 - Spheres
 - Triangles
 - (what about paraboloids and others?)

Test Methodology

- Geometry definition
 Phase 1) Created at origin, local Z axis up
 Phase 2) Created at (10,10,10), Z axis up
 Phase 3) Created at origin and rotated +90 deg around Y
 Phase 4) Translation (2,0,0) and rotated +90 deg around Y
Test Methodology

- Included
 - Geometry

- Did not include
 - Properties
 - Node numbers
 - Orbital definitions

Test Methodology

- Assessments
 - Appearance: Does STEP-TAS file imported into target tool look like original?
 - Areas: Do areas calculated by tools agree with analytical results?
 - Viewfactors: Do calculated viewfactors (approximately*) agree with analytical results?

* Small tolerance due to statistical nature of Monte-Carlo ray tracing technique, despite 10^9 rays
Test Results

Table 1: Areas (Cones, Cylinders, Disks, Rectangles)

<table>
<thead>
<tr>
<th></th>
<th>A_{cone}</th>
<th>$A_{cylinder}$</th>
<th>A_{disk}</th>
<th>$A_{rectangle}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>4.44283</td>
<td>0.283185</td>
<td>3.141593</td>
<td>1.000000</td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>ExE</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>ExT</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>E</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>TaE</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>ExT</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>T</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>TaE</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>ExT</td>
<td>X</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>T</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>TaE</td>
<td>X</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>Phase 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>ExT</td>
<td>X</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>T</td>
<td>4.4429</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
<tr>
<td>TaE</td>
<td>X</td>
<td>0.2832</td>
<td>3.1416</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 2: Viewfactors (Disks)

<table>
<thead>
<tr>
<th></th>
<th>F_{va}</th>
<th>F_{rv}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>0.381066</td>
<td>0.381066</td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.381967</td>
<td>0.381967</td>
</tr>
<tr>
<td>ExE</td>
<td>0.381968</td>
<td>0.381968</td>
</tr>
<tr>
<td>ExT</td>
<td>0.381711</td>
<td>0.381711</td>
</tr>
<tr>
<td>E</td>
<td>0.381968</td>
<td>0.381968</td>
</tr>
<tr>
<td>TaE</td>
<td>0.381711</td>
<td>0.381711</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.382056</td>
<td>0.382056</td>
</tr>
<tr>
<td>ExT</td>
<td>0.381711</td>
<td>0.381711</td>
</tr>
<tr>
<td>T</td>
<td>0.381711</td>
<td>0.381711</td>
</tr>
<tr>
<td>TaE</td>
<td>0.381654</td>
<td>0.381654</td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.382056</td>
<td>0.382056</td>
</tr>
<tr>
<td>ExT</td>
<td>0.382056</td>
<td>0.382056</td>
</tr>
<tr>
<td>T</td>
<td>0.381711</td>
<td>0.381711</td>
</tr>
<tr>
<td>TaE</td>
<td>0.381654</td>
<td>0.381654</td>
</tr>
<tr>
<td>Phase 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.381654</td>
<td>0.381654</td>
</tr>
<tr>
<td>ExT</td>
<td>0.382056</td>
<td>0.382056</td>
</tr>
<tr>
<td>T</td>
<td>0.381711</td>
<td>0.381711</td>
</tr>
<tr>
<td>TaE</td>
<td>0.381654</td>
<td>0.381654</td>
</tr>
</tbody>
</table>
Test Results

• Phase 1
 – Exporting cones from Thermal Desktop. One cone was missing in STEP-TAS file.
 – Using a different definition of TD’s conical frustrum (base down instead of up) solved the problem.

• Phase 2
 – Same as phase 1

Test Results

• Phase 3
 – Problems with spheres and cones.
 – Problems occurred regardless in which tool the geometry was created.
 – Have not found an alternate way to circumvent the problem.

• Phase 4
 – Same as phase 3
Test Results
As created in ESAFUD After export to STEP

Indices of cylinder surfaces reversed in translation

Test Results

- What did work
 - Cylinders
 - Discs
 - Rectangles (squares)
 - Triangles
- That’s 4 out of 6
What’s next

• **STEP-TAS**
 - Identify cause of cone and sphere issues
 - Update high level libraries and tool implementation
 - Release, use, listen to user feedback
 - Expand and Improve, e.g., include orbital definition in libraries, or add surface types
 - Get more (US) vendors involved

What’s next

• **Beyond STEP-TAS**
 - Capability to share results: STEP-NRF, EAR, HDF5
Conclusions

- STEP-TAS testing confirmed that the schema works well overall and identified specific areas for correction
- APIs provide a good way to control the schema implementation by vendors
- Implementation is as good as the APIs
- Quality API's and responsiveness to requests for 'bug' fixes are crucial
- STEP-TAS is there to stay
Contact Information

Robert W. Hughes
Jet Propulsion Laboratory
Mail Stop 125-109
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California, 91109
USA
Phone: +1 818 393-0762
Fax: +1 818 393-6682
E-mail: Robert.W.Hughes@jpl.nasa.gov

Georg Siebes
Jet Propulsion Laboratory
Mail Stop 125-109
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California, 91109
USA
Phone: +1 818 354-8553
Fax: +1 818 393-1633
E-mail: Georg.Siebes@jpl.nasa.gov