3/13/02

-« George Rinker -
March 13 2.02

GCR-1

JPL Historical Context

e Until recently, JPL
missions were one-of-a-
kind, spaced many years
apart

e Missions have been
designed for human
control from Earth

® Flight software has used
relatively simple time-
based sequencing

¢ Very little autonomy
except for fault protection
and a few “critical
sequences’

® There is a big gap
between systems
engineering and software
engineering

3/13/02 GCR-2

L

PL

3/13/02

e New era of frequent
launches

e More in situ
operations in
uncertain
environments

e More constrained
communication with
Earth demands
more onboard
decision-making

® Specter of mission-
ending failures due
to errors in software

GCR-3

JPL The MDS Vision

A unified architecture for fhght ground, and test
systems that enables missions requiring reliable,
advanced software

e Build a highly reusable core software system
for a wide variety of space mission applications

e Promote modern, synergistic processes
for systems and software engineering

e Establish an improved development life cycle
for more reliable mission software

e Reduce development cycle time and cost

¢ Reduce operations cost with increased autonomy

o Satisfy complex mission requirements
(e.g., robust in situ exploration)

o Express operational intent through goals

3/113/02 GCR+4

MDS Guidelines

® Based on the MDS experience to
date, a set guidelines has evolved
for developing a unified flight,
ground, and test architecture

N

Wogeien

® These guidelines are derived from the direction
defined and maintained by the MDS Architect
(Robert Rasmussen)

3/13/02 GCR-6

MDS Guideline

3/13/02

GCR-6

L

PL

Bt
e

o
;

3/13/02 GCR-7

(5

ﬁ State is Central °.

® A system comprises project assets in the context
of some external environment that influences them

® The function of mission software is to monitor and control a system
to meet operators’ intents

e MDS manages all essential aspects of this function via state

s Knowledge of the system, including its environment,
is represented over time in state variables

e The behavior of the system is represented
by models of this state

¢ Interaction with the system is achieved
via modeled relationships between state
and interface data (measurements
and commands), as mediated
by hardware proxies

¢ Information is reported, stored, and
transported as histories of state,
measurements, and commands

e Operators’ intent, including flight rules
and constraints, are expressed as goals
on system states

3/13/02 GCR-8

JPL A High Level View

S

APL

State Timelines

e State timelines maintain the value or set of possible values

(e.g., a range) of a state variable as a function of time

e They capture both knowledge and intent about state

. Past Future .

A
Continuous-valued quantity
Don’t ON :;)on’trm ON ___j
O Knowile ® | Care >
Discrete-valued quantity T
Ime

3/13/02

GCR-10

(4

L
[
=

Value Histories Mg!

e A container mechanism supporting functions that produce values over
time (state variable timelines, measurements, commands, ...)

¢ Encapsulate the interface to data management persistent storage
and data transport

e Stored and transported as data products
o Selected data products are preserved across resets

e | everage the use of models to preserve continuous information
using less storage space

e Can also simply store a set of discrete value instances
e Controlled by storage and transport policies

@ New Entries

» Entries are combined and compressed a-;t_hey age and are eventually deleted «

3/13/02 : GCR-11

MDS Guideline

3/13/02

GCR-12

State Intent

3/13/02

e Control is exercised over the system by imposing ...

¢ Constraints on states, which limit the range of a state variable
o State is allowed flexibility within these bounds

e Constraints on time, which limit the duration between two time points
e Time points are variable points in time
e These times are allowed flexibility, but again, with constraints

e A state constraint between two time points is called a goal

e A time constraint between two time points is called a temporal
constraint

e Goals and temporal constraints are expressions of intent

® Success in constraint achievement is an objective matter
o Criteria are explicitly expressed in constraint evaluation code
¢ Directly verifiable during test, since constraints are explicitly evaluated

GCR~13

(24

JPL Constraint Networks °.

® Goals and temporal constraints each connect a pair of time points

Goal Temporal Constraint

[min’, max’]

| state
constraint

® Time points are often shared (e.g., one beginning as another ends)

® A collection of connected goals and temporal constraints
form a constraint network

3/13/02 GCR-14

3/13/02 GCR-15

JPL Resolving Conflicts

e Example: three goals on the same state

The constraint —
4———— The time interval ——————»

; e
oa ., .
- o

Goal 2
<«— flexible start —»
Goal 3
i Goals 1 and 2 overlap, so Goal 3 is incompatible with Goal 2,
re compatible, as is but it can wait
Executable
Goal
Timeline

Time

3/13/02 GCR-16

(4

.9]_ Timeline Execution °.

e Goals are accepted if successfully placed on the timeline
for the goal state variable

e Goals are frozen and acted upon when they appear on the timeline
in the immediate future

e Goals are acted upon by achievers assigned to each state variable
e Elaborators monitor execution and adapt plans, as necessary

Intent

given the
present goals ...

... and given the
present state, ...

... achieve the goals.

Knowledge

Time
3/13/02 GCR-17

Putting It Together

* Elaborators, scheduling, L ~
* Goallevent-driven Elaborators Constraint Network oo
 Planning and constraint solving " [EG. [0 —{ ----- i Y
* Analogous to sequencing, mode

and configuration control, fault | [Executable
responses _ Goal)
State
, Knowledge
/ Achievers v — g vy
—» Estimators Controllers

|

_

* Achievers, DM/DT, ..

DM/DT

* Provide system behavuors

¢ Managed via goals and temporal constraints
s Fairly conventional real-time monitoring and control processes

3/13/02

GCR-18

L
d
a

MDS Guideline

3/13/02

GCR-19

(24

JPL Component-Based Architecture Mg!

Connect

3/13/02 GCR-20

L

PL

(44

Components are Fundamental

3/13/02

e The Component Architecture establishes the elements
of software design and their coherent integration

e Components and their connections embody...

The elements of functionality

Their types and registered instances within a deployment

Their interfaces and distribution across platforms

Their coordinated execution and synchronization

e These issues are raised to the level of symbolic realization
e Software organization is established independently and systematically
¢ It can be manipulated directly — including at run time, if necessary
o Complexity becomes a manageable entity

e The State Architecture establishes the elements of functionality
and their functional relationships

e E.g., state variables, achievers, hardware proxies, and so on
® |t does not establish the software design

GCR-21

(4

.9}_ Connection Rules °.

e Functional elements of the State Architecture
are structural elements in the Component Architecture

o State variables, achievers, hardware proxies, and so on, are Components

e State Architecture elements all interrelate in a few formally
established patterns

o E.g., measurements are used only by estimators,
goals are directed to state variables,
~only controllers issue commands,
only estimators update state knowledge,
and so on

e These are rules on connections within the Component Architecture of the
design

e The Component Architecture implements and enforces these patterns
o Compliance is inspectable
¢ Exceptions must be overtly managed — nothing is hidden

3/13/02 GCR-22

MDS Guideline

? The Whole Picture
JPL MDS Framework

Archltectu re

® The State and Component Architectures are defined within a set of
classes called the MDS Framework
¢ Frameworks are the elements of a partially complete application
o The MDS framework is organized in a hierarchy of dozens of packages
e Each project adapts the framework by extending it in mission-specific
ways

3/13/02 GCR-24

-

PL

The MDS Common Model Mg,

(4

: uses

h

Adaptation

f uses

Deployments

3/13/02

e The MDS Framework is the collection of most
core classes within the MDS architecture
¢ Developed and maintained exclusively by MDS
e Uniform (except for versioning) across MDS
adaptations
e Each project does an Adaptation of the
framework
¢ Captures project requirements and scenarios

¢ Extends framework classes to address
functions and configurations specific to the
project
o Reusable extensions are generalized (if
necessary) and moved to the framework
e Several Deployments of the adaptation are
defined
¢ These are the executable configurations to be
used in various settings (test beds, flight,
ground, etc.)
® Framework is developed incrementally with
example adaptations and deployments

GCR-25

b A

MDS Guideline

3/13/02

GCR-26

L
d
=

3/13/02

Deployments

e A deployment is an executable product
e Each project will have several deployments

e E.g., the flight software, the simulation software during
test, parts of the ground software, and so on

e Each deployment is constructed from components,
connected as appropriate for that application

e Not every component belongs in every deployment

o E.g., attitude is usually estimated only on board,
while trajectory is usually estimated only on the ground

e Deployments may be interconnected

e For remote links, deployments communicate
via component proxies

¢ Exchanges between a component and its proxy
are managed by data transport services

GCR-27

R For example...
.QL Ground&Flight Knowledge Exchange g

DS

e State knowledge is needed
in both places

e Common representation

o Coordinated, consolidated
& maintained, as appropriate

_Flight-Based State Kno

¢ |Information is exchanged)
via state variable proxies ‘ _ Ground-Based State Knowledge
¢ Original source in one deployment

¢ Copied (at some level) to a proxy
in the other

e Ground-based state determination is...
o Typically for things like orbit determination, calibration, ...
¢ Up-linked as necessary (trajectories, parameters, ...)
e Flight-based state determination is...
o Typically for things like attitude determination, device states, faults, ...
s Down-linked as available (part of telemetry)

3/13/02 GCR-28

L

PL Reuse Among Projects

Project 1 Etc. e Each project uses the same
e framework, except that later projects

will adapt later versions

e Can continue to track framework
evolution up to some freeze point

' e Updates to frozen version are

Deployments

1

—— V¥ | L . confined to that project
. ‘ | . e Though mainline framework
I_Adaptatlon Adaptation development may decide to make

B | = e some of the same updates
" e Projects can adapt from one another

o A similar track-then-freeze config-
uration management process would
be necessary

e Example adaptations currently
under way are:
e Mars Rover Mobility Adaptation

e Mars Lander Powered Terminal
Descent Adaptation

3/13/02 GCR-29

MDS Guideline

3/13/02

An al s1s to Cay’

GCR-30

.gi_ Systems Engineering °.

e Systems and software engineering need to complement one
another

e Systems engineering must define the system and behavior
o Software must understand the system and guide its behavior

e State Analysis is a model-based process defined by MDS to aid
systems and software engineering
o State analysis prompts comparatively methodical and rigorous
analyses of systems

¢ MDS permits the uniform expression of systems engineering
concepts in software architectural terms

o Due to the alignment of State and Component architectures, both
functionality and software design are considered simultaneously

e Resulting products map directly onto the MDS architectural elements
¢ Most MDS adaptation requirements can be defined by state analysis

e State and Component architecture specifications

are supported by tools, which will ultimately evolve The
into a unified code generation system for MDS e

3/13/02 GCR-31

-

3/13/02

PL

4

MDS Guideline Summary e.,

e 1. Use a State-Based Architecture as the Central Organizing
Principle
e 2. Use Goal-Directed Behavior to Express Intent

¢ 3. Use Integrated Planning and Scheduling to Achieve
Autonomy

¢ 4. Use a Component-Based Implementation to enforce State
Architecture Patterns

e 5. Use Incremental Development of a Software Framework to
Establish the Foundation for Reusability

e 6. Use Framework Adaptation to Create Deployments for
Project-Level Reuse

e 7. Use State-Based Analysis to Capture and Manage
Requirements

GCR-32

;!1 Conclusion

e MDS provides a revolutionary integration of
systems and software engineering which
addresses...

e Architectures for both functional and software design
interactions

¢ Unification of flight, ground, and test elements
¢ Reuse across deployments and projects
¢ A wide range of technical issues including autonomy

¢ Processes, tools, and design ready for the challenge
of a flight program

e State and Component Architectures are the
bedrock of our approach

e Each exploits a relatively small but powerful set of
ideas

¢ The two architectures complement one another in a
natural but far-reaching manner

3/13/02 GCR-33

