
.tion

311 3/02 GCR-1

Historical Context

Until recently, JPL
m iss i o n s we re on e-of-a-
kind, spaced many years
apart
Missions have been
designed for human
control from Earth
Flight software has used
relatively simple time-
based sequencing

0 Very little autonomy
except for fault protection
and a few “critical
sequences”
There is a big gap
between systems
engineering and software
engineering

311 3/02 GCR-2

Pressures for Change

e New era of frequent
launches
More in situ
operations in
uncertain
environments

e More constrained
com m u n ication with
Earth demands
more onboard
decision-making

e Specter of mission-
ending failures due
to errors in software

311 3/02 GCR-3

The MDS Vision

311 3/02 GCR-4

MDS Guidelines

0 Based
date, a
for dev
ground

These guidelines are derived from the direction
defined and maintained by the MDS Architect
(Robert Rasmussen)

311 3/02 GCR-5

MDS Guideline

311 3/02 G C R 4

State is Central

A system comprises project assets in the context

The function of mission software is to monitor and control a system

MDS manages all essential aspects of this function via state

of some external environment that influences them

to meet operators’ intents

Knowledge of the system, including its environment,
is represented over time in state variables
The behavior of the system is represented
by models of this state
Interaction with the system is achieved
via modeled relationships between state
and interface data (measurements
and commands), as mediated
by hardware proxies
Information is reported, stored, and 4

transported as histories of state,
measurements, and commands
Operators’ intent, including flight rules
and constraints, are expressed as goals
on system states

3/13/02 GCR-8

J

State Timelines

0 State timelines maintain the value or set of possible values

They capture both knowledge and intent about state
(e.g., a range) of a state variable as a function of time

C

Time Discrete-valued quantity

311 3/02 GCR-10

Value Histories

a

0

0

a

a

A container mechanism supporting functions that produce values over
time (state variable timelines, measurements, commands, . . .)
Encapsulate the interface to data management persistent storage
and data transport

Stored and transported as data products

Selected data products are preserved across resets
Leverage the use of models to preserve continuous information
using less storage space
Can also simply store a set of discrete value instances
Controlled by storage and transport policies New Entries

Entries are combined and compressed as they age and are eventually deleted Y

GCR-11 311 3/02

State Intent

Control is exercised over the system by imposing ...
Constraints on states, which limit the range of a state variable

Constraints on time, which limit the duration between two time points
State is allowed flexibility within these bounds

Time points are variable points in time
These times are allowed flexibility, but again, with constraints

A state constraint between two time points is called a goal

0 A time constraint between two time points is called a temporal
constraint

0 Goals and temporal constraints are expressions of intent

Success in constraint achievement is an objective matter
Criteria are explicitly expressed in constraint evaluation code
Directly verifiable during test, since constraints are explicitly evaluated

311 3/02 GCR-13

Constraint Networks

* Goals and temporal constraints each connect a pair of time points
Goal Temporal Constraint

[min’, max’] - - - - - - - - - - - - - - - -

Time points are often shared (e.g., one beginning as another ends)

A collection of connected goals and temporal constraints
form a constraint network

I
I

/
/

I
/

4
0

I
I

I
I

/
I

0
0

311 3/02 GCR-14

Resolving Conflicts - ... I-

Example: three goals on the same state

Goal 1

Goal 2

Goal 3

The constraint 4
- The time interval ,-b

4- flexible start +

Goals I and 2 overlap, so
they’re compatible, as is

Goal 3 is incompatible with Goal 2,
but it can wait

Executable
Goal

Timeline

311 3/02

Time

GCR-16

Timeline Execution

Goals are accepted if successfully placed on the timeline

0 Goals are frozen and acted upon when they appear on the timeline

Goals are acted upon by achievers assigned to each state variable
0 Elaborators monitor execution and adapt plans, as necessary

for the goal state variable

in the immediate future

, ...

Intent
1 ... given the

... achieve the goals.

Time
311 3/02 GCR-17

Elaborators, scheduling, . . .
Goalleven t-d riven
Planning and constraint solving
Analogous to sequencing, mode
and configuration control, fault
responses

Achievers, DM/DT,

Managed via goals and temporal constraints
Fairly conventional real-time monitoring and control processes

311 3/02 GCR-18

MDS Guideline

311 3/02 GCR-19

Components are Fundamental

0 The Component Architecture establishes the elements

* Components and their connections embody.. .
of software design and their coherent integration

The elements of functionality
* Their types and registered instances within a deployment

Their interfaces and distribution across platforms
Their coordinated execution and synchronization

Software organization is established independently and systematically
It can be manipulated directly - including at run time, if necessary
Complexity becomes a manageable entity

0 These issues are raised to the level of symbolic realization

The State Architecture establishes the elements of functionality

E.g., state variables, achievers, hardware proxies, and so on
and their functional relationships

It does not establish the software design

311 3/02 GCR-21

Connection Rules

Functional elements of the State Architecture
are structural elements in the Component Architecture

State variables, achievers, hardware proxies, and so on, arl

State Architecture elements all interrelate in a few forma
established patterns

E.g., measurements are used only by estimators,
goals are directed to state variables,
only controllers issue commands,
only estimators update state knowledge,
and so on

! Components

lY

These are rules on connections within the Component Architecture of the
design

0 The Component Architecture implements and enforces these patterns
Compliance is inspectable
Exceptions must be overtly managed - nothing is hidden

311 3/02 GCR-22

MDS Guideline

311 3/02 GCR-23

The

MDS
Whole Picture

Framework

311 3/02

The State and Component Architectures are defined within a set of

Frameworks are the elements of a partially complete application
The MDS framework is organized in a hierarchy of dozens of packages

0 Each project adapts the framework by extending it in mission-specific
ways

classes called the MDS Framework

GCR-24

The MDS Common Model

.
: uses . .
I.

Adaptation

uses . .

0

0

The MDS Framework is the collection of most
core classes within the MDS architecture

Developed and maintained exclusively by MDS
Uniform (except for versioning) across MDS
adaptations

Each project does an Adaptation of the
framework

Captures project requirements and scenarios
Extends framework classes to address
functions and configurations specific to the
project

0 Reusable extensions are generalized (if
necessary) and moved to the framework

0 Several Deployments of the adaptation are
defined

These are the executable configurations to be
used in various settings (test beds, flight,
ground, etc.)

Framework is developed incrementally with
example adaptations and deployments

311 3/02 GCR-25

MDS Guideline

311 3/02 GCR-26

Deployments

A deployment is an executable product
Each project will have several deployments
E.g., the flight software, the simulation software during
test, parts of the ground software, and so on

Each deployment is constructed from components,
connected as appropriate for that application

Not every component belongs in every deployment
E.g., attitude is usually estimated only on board
while trajectory is usually estimated only on the

Deployments may be interconnected

* For remote links, deployments communicate
via component proxies

Exchanges between a component and its proxy
are managed by data transport services

C

.ound

:omponents !

311 3/02 GCR-27

For example.. .
GroundcFlight * Knowledge Exchange MDS

State knowledge is needed

Common representation
Coordinated, consolidated

in both places

& maintained, as appropriate

e Information is exchanged
via state variable proxies

Original source in one deployment
Copied (at some level) to a proxy
in the other

* Ground-based state determination is.. .
Typically for things like orbit determination, calibration, . . .
Up-linked as necessary (trajectories, parameters, . . .)

Typically for things like attitude determination, device states, faults, . . .
Down-linked as available (part of telemetry)

Flight-based state determination is., ,

311 3/02 GCR-28

Reuse Among Projects

I 0 Each project uses the same
framework, except that later projects
will adapt later versions

Can continue to track framework
evolution up to some freeze point
Updates to frozen version are
confined to that project

Though mainline framework
development may decide to make
some of the same updates

e Projects can adapt from one another
A similar track-then-freeze config-
uration management process would
be necessary

0 Example adaptations currently
- under way are:

Mars Rover Mobility Adaptation
Mars Lander Powered Terminal
Descent Ad apt at i o n

311 3/02 GCR-29

MDS Guideline

311 3/02 GCR-30

Systems Engineering

Systems and software engineering need to complement one

e Systems engineering must define the system and behavior
Software must understand the system and guide its behavior

another

State Analysis is a model-based process defined by MDS to aid

State analysis prompts comparatively methodical and rigorous
analyses of systems
MDS permits the uniform expression of systems engineering
concepts in software architectural terms
Due to the alignment of State and Component architectures, both
functionality and software design are considered simultaneously
Resulting products map directly onto the MDS architectural elements
Most MDS adaptation requirements can be defined by state analysis

systems and software engineering

State and Component architecture specifications
are supported by tools, which will ultimately evolve
into a unified code generation system for MDS

311 3/02 GCR-31

MDS Guideline Summary

* I. Use a State-Based Architecture as the Central Organizing

* 2. Use Goal-Directed Behavior to Express Intent
3. Use Integrated Planning and Scheduling to Achieve

e 4. Use a Component-Based Implementation to enforce State

* 5. Use Incremental Development of a Software Framework to

e 6. Use Framework Adaptation to Create Deployments for

7. Use State-Based Analysis to Capture and Manage

Principle

Autonomy

Architecture Patterns

Establish the Foundation for Reusability

Project-Level Reuse

Requirements

311 3/02 GCR-32

Conclusion

MDS provides a revolutionary integration of
systems and software engineering which
addresses.. .

Architectures for both functional and software design
interactions

0 Unification of flight, ground, and test elements
Reuse across deployments and projects
A wide range of technical issues including autonomy
Processes, tools, and design ready for the challenge
of a flight program

0 State and Component Architectures are the
bedrock of our approach

Each exploits a relatively small but powerful set of
ideas
The two architectures complement one another in a
natural but far-reaching manner

311 3/02 GCR-33

