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ABSTRACT 

This paper describes an approach to estimating in real-time the degree to which an articulated robotic vehicle is 
undergoing wheel slip andor  sinkage in soft terrain. Robotic vehicles generally have hazard avoidance sensors 
which measure the shape of the sensible surface, and these can be used to predict what the articulation pose of the 
vehicle will be as it moves over the surface. An articulated vehicle (one with three or more wheels on each side) can 
directly measure the shape of the loadbearing surface by combining inclination and articulation sensing. Delays 
between the actual articulations and the expectations can be explained by wheel slippage. Differences between the 
expectation and the actual articulations can be explained by sinkage below the sensed surface. If one assumes that 
successive wheels on each side follow the same profile as the front wheel (sinking the same amount, if any, into the 
soil), then it is possible to estimate sinkage and slippage separately. A Maximum-A-Posteriori estimation procedure 
forinalizing this heuristic approach is developed and simulated, and the results presented and discussed. 
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1. INTRODUCTION 

Robotic all-terrain vehicles (such as Mars rovers landed in 1997 (Figure 1) and planned for launch in 2003 (Figure 2) 
and 2009) are required to safely navigate over largely unknown surfaces and to reach precise locations of interest. 
The dead reckoning accuracy for such vehicles is frequently 10% of distance traveled or worse', which is often 
unsatisfactory in ternis of reaching targets despite the fact that such targets are clearly visible in prior imagery. One 
of the major sources of dead reckoning accuracy is odometry error, which is exacerbated for all-wheel-drive vehicles 

wheels slip in a somewhat unpredictable way, especially in soft terrain, accounting for the bulk of the dead reckoning 
by. ijie lack of .uiipo.weled .w]iee] gi.viiig iiiiisroved esiiiiiates of o.~ei.-~~.le-grouiid distaiice ii-a.v.e;ed. TIit: driveli 

Figure 1 : Sojourner Mars Rover landed on Mars i n  1997 Figure 2: Mars Exploration Rover planned for 
launch in 2003 

error. 

' Brian.l-1.WiIcox@jpl.nasa.gov; phone (818) 354-4625; fax ( X I  8) 354-8172; 4800 Oak Grove Dr. MIS 107-102, 
Pasadena. CA 9 I 109 

1 



In addition to causing these annoying odometry errors, slippery or soft terrain can pose a threat to the safety of the 
vehicle. Extreme slippage can potentially move the vehicle into unsafe or unrecoverable terrain despite all efforts of 
the control system to correct for it. Sinkage of the wheels into soft terrain can high-center the vehicle, unloading the 
wheels and making further mobility impossible. Conventional ranging sensors (using lasers or stereo cameras) 
generally fail to warn of conditions where the loadbearing strength of the soil is too low to support the vehicle 
adequately. Other non-contact sensors, such as ground penetrating radar, often have ambiguous interpretations. It is 
desirable to find a way for a robotic vehicle to detect sinkage hazards before they become catastrophic, and also to 
improve upon the dead reckoning errors introduced by wheel slippage. 

Such soft material is not uncommon on Mars, as on Earth. For example, at the Viking 1 landing site, about 14% at the 
surface was drift material' and one of the landing legs sank 17 cm into that material. Previous studies of non- 
geometric hazard detection for planetary rovers, which assumed very large (-1000 Kg) rovers, have focused on 
Ground Penetrating Radar to detect subsurface  hazard^."^ However, mass and power constraints for less ambitious 
niissions lead us to desire means to detect these hazards without requiring additional mass, power, or complexity 
beyond the basic vehicle configuration. 

2. APPROACH 

Articulated vehicles (those having more than two wheels on each side) can be easily instrumented so as to provide 
sufficient information to estimate the magnitude of both sinkage and slippage. Imagine an articulated six-wheeled 
vehicle sitting on the terrain. The needed instrunientation measures the pose of the vehicle (the height of each wheel 
relative to the body, and the overall body pitch and roll), and uses a ranging sensor to give a local terrain map ahead 
of the vehicle. (Generally such sensors are already included with most robotic vehicles since they are needed for 
conventional hazard detection and avoidance algorithms. Thus the proposed algorithm requires no new hardware for 
typical applications.) Given the local terrain map, it is possible to form an expectation of what the vehicle pose will 
be if it moves a short distance ahead. For example, if the vehicle moves one axle-to-axle distance "A" forward, then 
the rear wheel moves to where the middle wheel was, and the middle wheel moves to where the front wheel was, and 
the front wheel moves onto the terrain which has been mapped by the ranging sensor. We would thus expect the 
difference in height between the middle and back wheels to be the same as the previously-measured elevation 
difference between the front and middle wheels in the previous rover position. This would be true unless the rover 
has not moved as far as expected. from slippage, or it could be because the terrain is compressing: causing the rover 
to sink into the terrain. 

One simple assumption that seems plausible for most situations allows us to disentangle sinkage from slippage. 
Specifically, we assume that successive wheels on each side of the vehicle follow in the tracks made by the front 
wheel on that side, and that they each compress the terrain by the same amount as the front wheel. While this may 
not always be true, it is plausible that in most circumstances the compression of the terrain by equally-loaded wheels 
will be the same. And only in the event of serious side-slip will the wheels not track along the same ruts, at least 
when the vehicle is nominally going straight. 

Using this assumption, it is easy to see how we can estimate sinkage and slippage. If we retain a memory of the 
front-to center height differences on each side, and of the center-to-rear height differences, we would expect that a 
plot of these two curves to be identical except delayed by the axle-separation distance A. We can assume that we 
have moved forward by a distance A when the values of these respective curves match. We have an independent 
check on the validity of our assumptions by checking the right and left wheels separately. A close match in the 
forward motion estimate provided independently by the right and left wheels means that our assumptions that the 
wheels track in the same ruts and compress the terrain by a uniform amount are probably valid. A radical 
disagreement between the two estimates suggests that the assumption is not correct for this particular terrain. When 
the two values agree, we can compare them to the simple estimates based on odometry to estimate the degree of 
wheel slip. 

Once we estimate the actual forward motion of the vehicle, we would like to estimate the sinkage as well. If we see 
(with the ranging sensor) that the terrain one axle-separation distance A ahead of the front wheel has a height H 
compared to the current front wheel contact point, then we can expect that the height difference between the front and 
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middle wheel when we move forward by A will be H. Since we have an independent means for estimating forward 
motion, we can accurately determine when we have moved forward by a distance A using the slippage estimate. Any 
residual in the actual height difference between the front and middle wheel and the predicted value H is due to 
sinkage. Thus we can estimate the niagnitude of the sinkage of the front wheels in the terrain. Once again we can 
perform this independently for both the right and left wheels. If images of the terrain show that the texture is roughly 
constant, then we can guess that the terrain properties are roughly constant over the width ofthe vehicle. In that case, 
if the sinkage estimates for the right and left sides roughly agree then they are probably valid. If they radically 
disagree, then again the underlying assuinptions are probably violated. 

3.0 MAXIMUM A POSTERIORI ESTIMATION OF SINKAGE AND SLIPPAGE 

We now attempt to formalize this heuristic argument mathematicallys. We consider a planar model of  one side of the 
vehicle as shown in Figure 3. Specifically, there are three wheels connected with passive but instrumented linkages 
so that they remain in contact with the surface as they roll. By combining the pitch and articulation sensor values we 
can compute the difference in elevation between the rear wheel and the center or front wheels (call these Z(I) and 
Z(2), respectively). We also assume a look-ahead ranging sensor that examines a number of discrete points on the 
ground ahead of the vehicle. Again, by processing the sensor data, we can compute the elevation difference between 
the rear wheel nominal contact point and the elevation of each sensed point on the ground ahead of the vehicle (call 
these Z(3) ... Z(N)). Needless to say, all these measurements have noise that must be accounted for in the analysis. 

We assume that undisturbed terrain in this planar model has an elevation function y(x), where y is the elevation at a 
point x along the horizontal axis. When the vehicle moves ahead, the front wheel sinks in the soil by an amount s(x), 
so that it rolls along in contact with the function y(x)-s(x). We assume that the trailing wheels do not further 
compress the soil (since the wheel loading of this vehicle is assumed to be roughly uniform). Thus they also track 
along y(x)-s(x). This is a key assumption which, if not approximately correct, will lead to a general failure of the 
entire approach, but which fortunately can be checked by comparing the independent estimates coming separately 
froin the two sides of the vehicle. If the wheels all turn at the same rate (which is reasonable since they are geared so 

d(N) -4 
x-0 at each iteration 

Figure 3. Planar model and symbol definitions 

low that in normal terrain they run effectively at the no-load speed), then when the wheel circumference has moved a 
distance w the vehicle will advance some distance x in the horizontal direction, usually less than w, due to wheel 
slippage. This slippage will generally be a function of the type and slope of the soil. 
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The objective of this analysis is to estimate x and s(x) given the 'odometer' reading w, the values of z( I )  ... L ( N )  and 
the associated measurement noise v(1) ... v(N). Intuitively this should be possible, since if y(x) and s(x) were known 
exactly up to the forward-most sensor (a ranging sensor for y and the front wheel for s), then for a given Aw, there 
would usually be a unique Ax which would allow all the sensor readings to match their predicted values. In other 
words one would 'slide' the rear and center wheels along the curve y(x)-s(x) until the observed elevation difference 
z(1) is matched between x+Ax (the new position of the tear wheel) and x+Ax+d(l) (the new position of the center 
wheel), which would fix Ax. Then one would use the measured elevation of the front wheel to compute y-s at that 
point (thereby extending our knowledge of s(x) forward by Ax). Similarly, we would use the measured elevation at 
the forwardmost range sensor to extend our knowledge of y(x) by Ax. This process would repeat so as to build an 
arbitrary sequence of Ax, s(x+d(2)), and y(x+d(N)) values. We would, of course, assume a yo(xo) value as the starting 
elevation and position of the rear wheel. (Knowledge of the initial y(x) and s(x) functions between x and x + d(N) is 
trivial since the vehicle will disembark from the lander along a surface of known geometry and with negligible slip 
and sinkage.) 

One potential problem with this approach is that values of z(l) ... z(N) will not be taken densely along the vehicle 
trajectory. For a robotic vehicle to successfully detect and avoid obstacles, the terrain is generally mapped at least as 
densely as the scale of the wheel contact patch. This is adequate for our purposes, since variations finer than the size 
of the wheel contact patch will not be seen in the wheel excursions. 

There are several issues that need to be considered with this model. First, if the vector Z(k)=col(z(N), ..., z( I ) )  at cycle 
k is measured on terrain which is very flat (compared to the measurement uncertainties v(k)) then we would still like 
to have a reasonable estimate of forward travel. This suggests that we should have a prior model of the distribution of 
the slip x(w), and that we should form a Maximum A Posteriori (MAP) estimate of the slip.' 

Following our heuristic argument above, if we were to "slide" the vehicle along until the observed elevation 
difference z(i) is matched, this corresponds to generating a discrete set of values y(i), i=O, ... MI and s(i), i=1, ... M2 
which can be thought of as our best estimate 'histograms' (Le. discretized piecewise constant representations) of the 
y(x) and s(x) functions. The horizontal density of these estimates should be sufficiently great to allow accurate 
models of the terrain for purposes of simulation, but not so great as to unduly burden the downlink data volume. 
Since the wheels mechanically average the terrain over a length equal to the tire contact patch (about a third of a 
wheel radius) we would tend to discretize the model at about (his ievei. Thus we might have M2=30 or so and 
M1=60. 

Thus we can now outline a procedure for estimating the sinkage and slippage of the rover: 

I )  Measure the elevation differences z(l) ... z(N). 

2) use previously-estimated (described below) histograms y(i), i=O, ..., MI and s(i), i=O, ..., M2, as well as a Gaussian 
prior distribution for Ax with mean m, and variance ox2 to compute the (nonlinear) MAP estimate for Ax. We assume 
the distribution for measurement noise for each z(i) is also independent and Gaussian. Since the MAP estimate of 
independent Gaussians is a weighted least-squares estimate, we compute: 

h-I 

m i n i  I-' [( I /o,,,,2)(zO')-y(dO')+i) - 
Y(i)+s(i))21 + (1 /Gz(l ,2M I )-Y(d( 1 >+i> + 
s(d( l)+i) - y(i) + s(i))' + ( I/ox2)(i-m.J2) 

The interpretation of this expression i s  a follows: to maximize the posterior probability which i s  the product of 
exponentials, we need to minimize the magnitude of the exponent. If we let i be the histogram bin which we assume 
the rear wheel has advanced to (and changed to a elevation y(i)-s(i)), then the summation from j=3 to N-1 is of 
squared errors between the ranging sensor elevations and the corresponding y values in the histogram. The next term 
is the weighted squared error for the middle wheel incorporating the histogram data for s(1) a well as y(1). The last 
term is from the Bayesian prior distribution. Note that z(2) does not even appear in this expression, as the advance of 
the front wheel involves an unknown amount of sinkage in the soil and so there is no histogram data with which to 
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compare. A similar situation arises with z(N) in the summation, since y(x) unknown ahead of the forwardmost sensed 
point. 

We implicitly assume that the forward advance is not so great as to push the next sensed point z(N-I) off the end of 
the histogram, although this could be accounted for if necessary. We would then perform a parabolic interpolation 
the weighted-sum-of-squares to get a refine estimate of Ax to a fraction of a histogram bin. While not strictly valid, 
interpolation of the error function should be better than taking integer bins, while not as computationally intensive as 
the more conceptually-correct approach of computing the minimal error function on interpolated data. Note also that 
we could compute m, as a function of the data here prior to finding the minimum over i to account for the fact that 
our expected slip is a function of average terrain slope. For example, we could compute 

II 

( X"(z(j)/d(j)))/N 
J = 1  

as an estimate of the slope and compute some linear or non-linear function of this to compute m,. We could also 
modify the estimates of m, and ox2 using prior estimates to adapt and refine our Bayesian prior, 

3) Now that we have an estimate for Ax, we translate the histograms for y and s forward by Ax and up by  AX). 
This requires interpolation, due to the non-integer nature of Ax, so we assume that linear interpolation between 
adjacent points is adequate (again to reduce computational complexity). We extend our knowledge of y forward by 
linear interpolation from the translated old y(N) value to the observed z(N) at d(N). Similarly, we extend our 
knowledge of s forward using linear Interpolation from the translated s(d(2)) to a new forwardmost value 
S(d(2))=Y(d(Z>)-Z(2>. 

4) We need some way to incorporate the new measurements into the histogram for y (otherwise only the 
forwardmost measurement y(N) will play a role in defining the function, which seems to waste a great deal of 
valuable information). Note that between the old d(N) and the new d(N) we have a linear approximation to y(x). 
When the vehicle moves forward by Ax (generally less than d(N)-d(N-I)), we will get a new value for y from z(N-1) 
which will, in general, not lie on the previous linear approximation to y. Since we expect that our measurement 
noise ~ ~ ( ~ - 1 )  will be quite small compared to the grossness of the linear interpolation, we would like to force the 
histogram to conform to the data at this point (the new d(N-1) point). We would also expect y(x) to be a continuouq 
function, so that nearby points should also be modified. For simplicity, we will assume that adjacent histogram bins 
will be updated by 'splitting the difference', i.e. they will be reassigned values halfway between the new 
measurements of y based on each of the z(i) measurements for i<N and the old (but translated) histogram value. 
This is an ad-hoc assumption made in the interests of computational simplicity which will hopefully allow a fairly 
accurate estimate of y(x) to be generated as all of the sensors sweep over the surface . We can perform a 
corresponding process for s(x) by assuming that deviations between z(1) and y(d(1))-s(d(1)) are due to errors in the 
measurement of s and not y, which makes some sense because by this time the histogram for y has been refined with 
multiple measurements while the histogram for s has been generated only by piecewise linear interpolation out to the 
single measurement at z(2) (i.e. the front wheel). 

5 )  Lastly, move the vehicle forward and repeat the cycle. 

This model and analysis are very simple and somewhat suspect from a theoretical point-of-view. However, as in 
many practical applications, real-time performance, computational complexity, and availability of sensor data are of 
paramount importance, with the alternative being not to do any estimation at all. Thus we would like to know what 
the performance of this simple estimation procedure is, and to what degree it gives improvement over use of the prior 
mean 111, to estimate over-the-ground distance traveled and not estimating sinkage at all (and accepting the risk of 
getting stuck). We would also like to evaluate the usefulness of having more ranging sensor measurements as 
opposed to fewer, since each additional measurement has cost. 

A Monte Carlo numerical simulation of this algorithm on synthetic terrain has been performed, with the results 
shown in Figure 4. The synthetic terrain is developed by uniformly sampling a linear combination of sine waves, 
whose amplitude is random over a uniform range extending from zero to some fixed multiple of the wavelength 
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(thereby ensuring scale invariance), and whose phase is random over [0,27c]. Twenty different wavelengths are 
combined over the range from 1 cm to 1.9 meters, with each one 30% longer than the previous one. This range 
encoinpasses all scales of interest: smaller scales average to zero over the bins (and the wheel contact patch) and 
longer scales are virtually flat over the length of'the vehicle and its look-ahead ranging sensor. (Note that the smaller 
scales will exhibit substantial aliasing when binned, which is an important and real effect that needs to be modeled by 
the analysis.) As mentioned before, a 'smooth' simulated terrain is realistic here, since presumably the normal hazard 
detection system will avoid rough or discontinuous terrain. Measurement noise for the articulation sensors is taken to 
be 0.04 nim, while the measurement noise for the ranging sensor is 2 mm, as determined for one of the Sojourner 
software development test vehicles. 

The interpretation of Figure 4 is as follows. When the actual slip was 20%) (meaning that the actual forward motion 
of the vehicle was X0?4 of the rim motion of the wheel), even relatively small surface roughness is adequate to detect 
both slippage and sinkage. In Figure 4, one of the curves shows the case where the standard deviation of the 
Bayesian prior is 0.05 cm (1% of the actual advance) when the slippage of the actual vehicle advance per cycle is 1 
cm. This artit'icially "overweights" the Bayesian prior to show the sinooth transition from 20?4 slippage to very small 
errors as the terrain gets rougher and the match between the articulation profiles of the wheels becomes 
overwhelming. However, the chassis articulation sensors are so accurate that we can do much better than this. When 
the Bayesian prior is taken to be 10% of the actual, even on relatively smooth terrain, the improvement in slippage 
estimation is very good whenever the surface roughness is large compared to the articulation measurement error. 
Improvements to the odometry to give an error of 1%) or less seem quite possible with this technique. When the RMS 
surface roughness is above 1 cm, the ineasurements of the vehicle pose and articulation are so accurate that the 
estimate of the actual amount of slippage can be much better than l%,, even when the "goodness" of the original 
wheel odometry is seriously overestimated ( 1 sigma=] 0%). Given an accurate estimate of the vehicle motion, the 
sinkage of the front wheels can be accurately estimated as limited priinarily by the noise in the ranging sensor. 

I \  Percent 

EKP 4 
odometry 

\ Bayesian Prior \ -1 096 
I JI  

I .25 .so 1 .o 2.0 4.0 

Roughness of Scale-Invariant Terrain (RMS cm) 

Figure 4. Odometry error as a fiinction of terrain roughness (20% actual slip) 

6 



4.0 SUMMARY AND CONCLUSIONS 

It is relatively straightforward, as was done with Sojourner, to create a hazard avoidance algorithm that deals 
effectively with a relatively sparse rock field. However, future robotic vehicles traveling vastly farther than the -1 00 
111 traversed by Sojourner will occasionally face sinkage and slippage hazards that are complex and potentially 
catastrophic, and will in any event find such hazards make it difficult to accurately reach desired targets. We have 
outlined here a technique which is expected to robustly estimate the degree of sinkage and slippage using sensors 
which are likely to be incorporated into such vehicles anyway. This algorithm has an internal consistency check, in 
that it can be separately applied to the right and left side wheels of the vehicle, creating separate estimates of slippage 
and sinkage. If these estimates approximately agree (or account for unexpected yaw in the vehicle heading), then one 
can be reasonably confident that both are correct. If they disagree, then one IS led to suspect that the primary 
underlying assumption (that the wheels track the same loadbearing surface profile) is not correct. In that case, one 
can always revert to the baseline assumptions concerning the forward advance expected given the odometry 
measurements. 

Clearly it is important to validate this approach on a real vehicle, especially to determine if the key hypothesis that the 
wheels track the same loadbearing surface is correct on a wide variety of terrains. In the case of extreme sideslip, of 
course, this hypothesis will not be valid, nor will it in the case for vehicles where the wheelbase varies significantly 
for the different wheel pairs from front to back. However, since maximum vehicle mobility performance will be 
achieved when all the wheels are approximately equally loaded, it seems likely that many high-mobility vehicles (6-  
or-8 wheeled, or tracked) will give sufficient articulation data to feed this algorithm and give useful results. 

Several extensions and improvements to this technique are possible. One is to begin to estimate the "slip versus 
slope" function of the terrain. This function relates the wheel slip (in percent) to slope. By estimating this function, 
the Bayesian prior used to initialize the MAP estimation procedure is likely to be greatly improved. This will take 
into account, for example, the intuitively correct fact that normal odometry tends to overestimate the distance traveled 
by the vehicle when going uphill, but it can underestimate the distance traveled going downhill. This slip-versus- 
slope function can further be estimated as a function of observed terrain visual texture. That is, one could categorize 
the apparent texture of the terrain (using some classification technique applied to the vector of outputs from a 
collection of spatial filters, for example) and then separately estimate the slip-versus-slope function for each of these 
ier rail1 clasaes. Orie rriay quickly be abie io cieiennine that some iexiures imply neariy non-rraversible terrain, and 
update the hazard avoidance algorithm so that these texture classes are treated as hazards. One may also be able to 
use this slip-versus-slope estimate in resource planning. For example, the energy or time needed to climb a sandy 
slope will be a strong function of the slip. If this slip can be accurately estimated in advance, this resource can be 
predicted and can be factored into the route planning algorithm or in mission planning (e.g. for reordering or pruning 
the activity list when resources run short). 
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