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ABSTRACT 
An ultrasonic/sonic drillerkorer (USDC) was developed to address the challenges to the NASA objective of planetary in-situ 
rock sampling and analysis. The USDC uses a novel drive mechanism, transferring ultrasonic vibration into impacts on a 
drill stem at sonic frequency using a free-flying mass block (free-mass). The main parts of the device and the interactions 
between them were analyzed and numerically modeled to understand the drive mechanism and allow design of effective 
drilling mechanism. A computer program was developed to simulate the operation of the USDC and successfully predicted 
the characteristic behavior of the new device. This paper covers the theory, the analytical models and the algorithms that were 
developed and the predicted results. 
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1. INTRODUCTION 
Rock dnlling and sampling are required by NASA exploration 
missions to Mars, Titan, comets and asteroids for in-situ analysis. 
Existing drilling techniques are limited by the needs for large 
axial forces and holding torques, high power consumption and an 
inability to efficiently duty cycle. Lightweight robots and rovers 
have difficulties accommodating these requirements. To address 
these key challenges to the NASA objective of planetary in-situ 
rock sampling and analysis, an ultrasonic/sonic dnllerlcorer 
(USDC) was developed [1,2]. The actuator of the USDC is an 
ultrasonic horn transducer that is driven by a piezoelectric stack. 
Unlike the typical ultrasonic drill where the drill stem is 
acoustically coupled to the transducer, the horn transducer in the 
USDC drives a free flying mass (free-mass), which bounces 
between the horn tip and a drill stem at sonic frequencies. The 
impacts of the free-mass create stress pulses that propagate to the 
interface of the stem tip and the rock. The rock fractures when its 
ultimate strain is exceeded at the rockhit interface. This novel 
drilling mechanism has been shown to be more efficient and 
versatile than conventional ultrasonic drills under a variety of conditions. The low mass of a USDC device and the ability to 
operate with minimum axial load with near zero holding torque (see Fig. 1) offers an important tool for sample acquisition 
and in-situ analysis. 

In order to understand the drive mechanism and allow design of effective drilling mechanism, a computer model was 
developed. Hear are five elements involved in the drilling i.e. the electrical driver, ultrasonic transducer, free-mass, drill stem, 
and the rock. In the initial modeling the main elements and the interaction between them were analyzed and modeled 
separately. An integrated one-dimensional software program was developed to simulate the operation of the USDC. The 
strain that is induced in the rock was calculated and the drilling rate was estimated based on the specific energy required to 
fracture the rock. This paper reports on the individual models and the algorithms of the integrated program. The computed 
results and the comparison with the experimental tests are also presented. 
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Fig. 1. The USDC is shown coring with minimum 
axial force and holding torque (lefi), and a 

diagram Of the USDC device (right). 

2. NUMERICAL MODELING AND ANALYSIS 
The USDC device consists of three main parts: an ultrasonic transducer (piezoelectric stack, a backing element, and a 

horn), free-mass and a drill stem. The ultrasonic transducer vibrates at a frequency of about 20lcHz. These vibrations of the 
horn tip excite the free-mass, causing it to hop between the horn tip and the top of the drill stem at frequencies around 1000 



Hz. The free-mass transfers energy from the ultrasonic transducer to the drill stem. The shock waves caused by the impacts 
of the free-mass propagate to the bidrock interface and wherever the rock is strained past its ultimate strain it fractures. In 
order to determine the critical issues related to the control and optimization of the drill models the interaction at the various 
interfaces of the drill were investigated. The four interactions that were modeled include: 1) transducer with the driving 
circuit, 2) horn tip with the free-mass, 3) free-mass with the drill stem and 4) base of the drill stem (bit) with the rock. In 
order to integrate these models into a computer program to simulate the operation of the USDC, efforts were made to 
simplify the models and reduce the computing time. 

A .  Modal analysis and equivalent circuit of the transducer 

The horn transducer consists of a steel-backing block, a PZT-8 stack, a steel horn and a pre-stress bolt as shown in 
Fig. 2. 

The transducer is a composite longitudinal vibrator with varying cross 
sections and can be modeled by the Mason equivalent circuit as presented 
in a previous paper [ 3 ] .  In order to include engineering details in the final 
transducer design a finite element model was developed to determine the 
full frequency response of the device. 

The finite element equations for elastic structure including piezoelectric 
elements have been derived by many authors [4,5]. In this high power 
ultrasonic application, the transducer is designed and fabricated to have 
hgh  mechanical Q, and is operated at or near its first longitudinal 
resonance frequency. Using modal analysis allowed us to isolate and 
concentrate on h s  resonance mode and it simplifies the model and 
reduces the computing time. 

Solving the generalized eigenvalue problem of finite element equations, 
the resonance frequencies and corresponding mode shapes can be found. 
We obtain a set of resonance frequencies, W, , W, , . . . , W n  and normalized 
mode shapes (eigenvictors) 

Fig. 2. Calculated modal shape of the 
horn transducer at frequency of 22.668 
kHz. The meshed areas represent the 
cross section of the deformed transducer (4 1, k 2  1 Y - 9  {en 1 * 

Finite element packages that can be used to determine these resonance frequencies and mode shapes are available 
commercially. The horn transducer of the USDC was modeled by axisymmetric elements in Ansys finite element 
package [7]. Fig. 2 shows the model shape of the first nonzero-frequency resonance of the transducer obtained by 
the f i i t e  element model. The mode is basically a longitudinal vibration with larger displacement at the horn tip 
than the back. The resonance frequency is 22.688 kHz, which is very close to the measured frequencies from 22 to 
23 kHz. 

By expressing the displacement as the summation of the model shapes as 

n 

the finite equations can be converted to a modal equations as was done in previous I --------------.--. work [6] 1 nTl$+#-#-Lm 

where di is the amplitude of the mode i, Q is the electric 

damping, electromechanical coupling and force for the 
modes respectively. The Ri and pi can be calculated from 
the matrixes [C] and [PI, and Fmi is expressed as 
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Fig. 3. Schematic of the equivalent circuit of the 
transducer around resonance. The generator source 
is also included in the dashed square. 



Only the first longitudinal mode is taken into account in the analysis. Then, Eq.(2) becomes 

( w : + j w R - u 2 ) d = p V + F m  

Q = pd +CJ 
(4) 

where subscripts of 1 are omitted for simplification except that for resonance frequency W ,  . 
The Eqs. (4) is able to be represented by an equivalent circuit around resonance as is shown in Fig. 3. 
In Fig. 3, subscripts m are added to denote that the symbols actually represent mechanical variables and 

Upon inspection we have L, = 1, c, = 1 1 W, and the mechanical "current" I ,  is the modal velocity 
parameters. The element in the dashed square is the sketch of electric driving circuit. 
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Ths  circuit allows us to calculate the variables easily. When the transducer is driven electrically and is 
mechanically unconstrained (no impacts with the free-mass), the modal velocity can shown to be 

PV I ,  = 1 
1 

j ( d ,  --) + R, 
d m  

B. Reaction offiee-mass impacts to the transducer 

In the operation of the USDC, a small preload force, either from gravity or from a spring is applied to the 
transducer. The force pushes the transducer down toward the free-mass and the bit. A harmonic voltage at a 
frequency around the resonance drives the transducer. The free-mass, energized by the vibrating horn tip, then, 
bounces between the bit and horn tip and maintains a gap between them. The impacts of the free-mass to the horn tip 
effect both vibration and translation movements of the horn transducer. 

1) Translation movement of the horn transducer 
We assume the preload force is constant and produces an acceleration a of the transducer. Suppose an impact 

happens at time t ,  , and contact time is very short, the contact force can be expressed as 

F, = f,W - t ,  1 (7) 
where 6 is the delta function. Using momentum conservation in the impact, we have 

f ,  = -mAv, (8) 
where m and Av, is the mass and velocity of the free-mass respectively. Each impact results in a change of the 
center of mass (COM) velocity of the horn by 

where M is the total mass of the horn transducer, and H is the step function. Therefore, the COM velocity of the 
transducer becomes 



U = U , + a t + x A U ,  (10) 
I 

The displacement of the transducer is therefore the time integral of the velocity. 

2) Vibration of the transducer 

The vibration of the transducer is the summation of the vibration induce1 by the electric voltage ’ and i le 
vibration caused by the mechanical force F, , which are the impact forces of the free-mass. The applied voltage is 

assumed being harmonic in the form of V = V,, exp(jwt). The induced vibration can be solved explicitly upon 
the circuit. To calculate the impact induced vibration, we rewrite the equation of the equivalent circuit in the form of 
differential equation as 

L,d + Rmd + C,d = p V ( t )  + F, (11) 

The mechanical force caused by the impacts of the free-mass on the hom tip can be determined from Eq. (3), Eq. 
(7) and (8), to be 

F, = Slf6( t  - t I )  = -mAv,St6(t - t l )  (12) 
where 5, is the tip displacement of the mode shape. The solution of Eq.( 11) for the impact force F, is a free ring- 

down vibration after the impact time tI  and is expressed as 

I ml = d  . I =-- mAvr51 e x p [ ( - a + j w f ) ( t - t I ) ] ,  

where a is damping coefficient and w, is the free vibration frequency, and can be determined by the circuit with the 
electric source E = 0. 
The final solution of the model velocity is 

t > t i  (13) 
L m  

I ,  = d = d e  + EdI =I,, -k X I m I  
I I 

where the subscript e is denote to the electrically induced variables and I to the impact induced. 

C. Interaction between transducer and the electric driver 

Power output from the voltage source E is the time averaged integral of product of multiplication of the source 
voltage by the current and is expressed as 

1 
PE = - jE(t)I(t)dt 

TT 
1 1 

= - j E ( t ) I ,  (t)dt + - j E ( t ) X  I ,  (t)dt 
TT TT I 

or 

‘E = ‘Ee + ‘E1 (16) 
where the first item in Eq.(l6), PEe , is the power with no free-mass loading and PEI is the power change 

introduced by the free-mass loading. I , ( t )  is the current though the source due to the electric drive voltage, and 

I ,  ( t )  is the current due to the free-mass impacts, 

The power lost on the resistor R, is calculated by 



Pd =--IR,[I(t)] 1 dt = - j [ I , ( t ) + x I , ( t ) ] 2 d t  Rd (17) 
T T T  I 

D. Free-mass driven by the horn transducer 

I )  Simple collision model 
A simple collision model was applied first to explore the basic mechanism 

of the hodfree-mass driving. In this model, we assume that the energy loss 
and time duration of the impact is negligible, and the mass of the horn is 
much larger than the free-mass. Using the conservation of momentum and 
energy, we have 

ration range 

v,,, = vi,, + 2v Fig. 4. A Schematic of the horn 
driving the free-mass. 

(18) 

where V ,  is the incoming velocity of free-mass prior to impact with the 

horn, v,,, is the outgoing velocity after impact with the horn, and v is the velocity of the horn tip. 
The horn vibrates at the resonance frequency. The tip displacement is harmonic and is represented by 

u = u, cos(wt + 9) (19) 

where time zero is set at the moment when the free-mass just reaches the edge of the range of tip vibration. 
velocity of the horn tip is found by takmg the time derivative of the displacement and can be written as 

The 

v = -a, sin(wt + 9) (20) 

A computer simulation model, which traces the position of the free-mass until it leaves the tip vibration range 
(2u0), was programmed. The routine calculates the free-mass speed after interaction with the horn. The outgoing 
speeds of the free-mass versus the vibration phase are shown in the Fig. 5 for different ratios of incoming speed to 
the tip velocity amplitude respectively. The model accounts for multiple impacts that become possible when the 
impact is timed appropriately, which are sown in Fig. 6b and 6c at phases around 50". 

a. vi,, = 0.2 V ,  b. vi,, = 1.0 V ,  c. vi,, = 2.0 v, d. vi,, =4.0 V, 

Fig. 5. The speed of the free-mass after impact versus relative tip vibration phase for different incoming speeds. 
The solid horizontal lines indicate the level of free-mass incoming speed, and the dashed line is the amplitude of 
tip velocity V, . 

Although the Eq.(18) implies that the v,,, may be less than vi,, when the tip velocity v is negative, the 
computed results show that the free-mass velocity does increase on average after interaction with the vibrating tip 
assuming a uniform probability of the relative phase in the range of 0" - 360". The increase rate is higher the lower 
the relative incoming speed. The causes of the increase are 



(1) Although the tip velocity alternates periodically and is negative half of the time, the free-mass has less chance 
to interact with the tip when the tip is pulling back, especially if the fiee-mass speed is low. It results the phase 
range where the v , ,~  > vi,, is always greater than the half of 360". 

(2) If the first impact results in low or negative vOut, the free-mass will stay in the tip vibration range longer and 
has the possibility to be h t  a second time. The irregularities of the curves around a phase of 50" in Fig. 5b and 5c 
are due to the multiple impacts between the free-mass and the tip. 

2) Finite element model 
In the simple collision model, we assumed that the horn mass is much greater than the free-mass. This is true if 

we include the total mass of the horn transducer. However, in the short time duration that the impact lasts, the 
impact wave propagates to a limited range within the horn transducer. The remaining part of the transducer is 
actually not involved in the impact. So, the assumption of a horn mass much greater than the free-mass may not be 
correct. To explore the details of the real impactldriving process, a finite element model was constructed. 

In the model, the horn transducer is truncated to a XI4 long bar. A symmetric boundary condition is applied at the 
other end of the bar. The validity of this truncation is based on the fact that the structure difference in the area far 
from the point of impact will not make a difference to the free-mass bouncing process. From the view of wave 
propagation the free-mass should not "feel" the structure difference in the area, as long as the free-mass leaves the 
tip surface before the impact wave can propagate through the medium and be reflected back to the impact spot. 
Axisymmetrical solid elements are used to represent the horn tip. The initial conditions, i.e. the displacements and 
velocities of the nodes, are set to typical longitudinal vibration values in the bar. Compression only link elements 
are placed between the nodes on the surfaces of the fi-ee-mass and the horn tip in the contact area. The free-mass is 
treated as a rigid block with a curvature in the contact area. 
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Fig. 7. The free-mass and surface 
displacement as a function of the time. This 
figure shows doule contacts happened in the 
interaction. 
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Fig. 8. The velocity of the free-mass as a function of 
the phase for the simple collision, spring-mass and FEM 
models. 

The finite element approach provides a more accurate description of the free-mass 
speed after the collision and the time duration of the collision (see Fig. 7). 
Comparing with the simple collision model (see Fig. 8), ones can see that the 
maximum speed is typically lower compared to the simple collision model. This 
implies a limited effective mass of the horn. The curve also displays a phase shft 
that can be explained by the affect of the contact time. 

Spring-mass model 
The finite element approach explored two phenomena that were not accounted for 

in simple collision model, elasticity of the horn and the effective mass involved in 
the impacts. Based on the phenomena, a spring-mass model was developed. The 
model uses a mass and two springs to present the horn as shown in Fig. 9. 

The parameters of the mass M and front spring k are determined using the 
rebound velocity and contact time obtained by the finte element approach. The top 

Fig. 9. A sketch of the 
spring-mass model for 
hodfree-mass interaction 
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Fig. 10. Finite element displacement results of the free-mass 
bounce from the drill bit. The free-mass is 2 grams and the 
incoming speed is 1 d s .  The rebound speed is 0.5 d s  and 
contact time 15 ps. 
spring constant K is set by the resonance frequency of the 
horn transducer. An example of the results of the model is 
presented in Fig. 8. The results are found to agree 
exceptionally well with the finite element results. The 
spring-mass model therefore provides a more time efficient 
solution with reasonable accuracy, which was required by the 
integrated simulation program. 
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E. Free-mass bouncing fi-om the drill bit 

The typical geometry of the drill stem is shown in the left 
of Fig. 10. It consists of a head and a thin cylindrical bar. The 
free-mass impacts the head and creates a stress wave that 
propagates toward the lower end of the bit. A finite element 
model, which is similar to that used for horn tip and free- 
mass interaction, was utilized to investigate the impacts. The 
length of the drill stem was fixed to be long enough to avoid 
the interference from the reflected wave of the bottom. An 
example of the results for the displacement of the free-mass 
and the center of the top surface of drill bit as a function of 
time is shown in the right of Fig. 10. 

The 
curvature of free-mass surface at the contact area is 0.1 mm. 
The steel stem is 3 mm in diameter and has a head of 
diameter 12 mm and is 6 mm long. The total height of the 
drill bit is 100 mm. A symmetric boundary condition is 

The free-mass is 2 grams with speed of 1 d s .  
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Fig. 1 1. The stress as a h c t i o n  of time at the bottom 
of the stem that is 100 mm from the top surface. 
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Fig. 12. Flow chart of the simulation program 

applied at the bottom. The rebound speed is 0.5 d s .  
The ratio of rebound speed to the incoming speed is 
dependent on the value of the mass. The affect of the 
incoming speed is not significant. 

By investigating the stress in the stem, we found that 
the impact resulted in a compression plane wave 
propagating with a velocity around 5000 d s ,  which is in 



agreement with the longitudinal wave velocity in thin steel bar. The stress at the bottom of the stem is presented in 
Fig. 11 as a function of t h e .  

F. Integrated computer simulation model 

A computer program was developed to simulate the operation of  the drill system including the horn transducer, 
free-mass, drill stem and the electric driver. The program was able to predict the performance of the USDC under a 
variety of initial conditions. 

In the simulation, we assumed that the vibrations in the drill bit induced by the previous free-mass impacts were 
attenuated when the free-mass returns and hits the drill stem. Initial experiments suggest that this is a valid 
assumption. We also neglected the movement of the drill stem with respect to the rock, since it is very slow in 
comparison to the quick motion of the free-mass. Therefore the top surface of the dnll stem is set at the same 
position for the each of the impacts. 

The flowchart of the calculation procedure is presented in Fig. 12. We start the simulation by setting the initial 
values of the position and velocity of the horn and the free-mass. The software traces the translation movements of 
the horn transducer and the free-mass as well as the vibration of the horn as functions of time. It predicts the time 
and location of the free-masdhorn or free-masshit collision. Using the data of the free-masshorn and free-masshit 
impacts that were determined from the models mentioned in previous paragraphs, the simulation calculates the 
changes of the variables as time evolves. The movements and vibration due to the impact are recorded along with 
the impact momentum and time. The program then proceeds to determine the next impact. The energy supplied by 
the electric source and delivered to the transducer is integrated and recorded concurrently. The statistics reported by 
the program include; electric input power, mechanical output power delivered to the drill stem, average and 
distribution of the free-mass speed, etc. The first 20% of the events are excluded in order to eliminate the possible 
influence of the initial settings. 

Typical simulation results are shown in Fig. 13-15. In this simulation, the transducer is excited by 100 V peak 
voltage at resonance frequency of 22.5 kHz. The mechanic Q of the transducer is 1000. The free-mass weighs 2 
grams, the transducer with the mounting platform weighs 800 grams and Earth gravity applied as the preload force. 

In Fig. 13, each dot represents an impact event of the free-mass with the bit stem. The X-axis is the time that the 
impact happens and the Y-axis is the velocity of the free-mass before impact, normalized by the horn tip vibration 
velocity without loading, in this case, 6.67 d s .  The pattern looks like a random sequence of impacts. No repeat 
cycle has been observed. Actually, no random perturbation is added to input data of the program. The simulation is 
repeatable for fixed initial conditions. Therefore the simulation actually shows a pseudo-random procedure. The 
amplitudes of the horn vibration at the moment before hodfree-mass contact are presented in Fig. 14. The 
amplitudes are normalized to the horn vibration amplitude without loading. As expected, the average amplitude is 
lower than that without loading because the horn loses energy while driving the free-mass. 

Fig. 13. Free-mass velocity normalized by 
the horn tip vibration velocity 

Fig. 14. Horn vibration amplitude normalized 
by the amplitude without loading 

Fig. 15(a) shows the heights of the horn transducer in the free-masshorn impact events. Ones can see the trace of 
the translation movement of the horn transducer. Fig. 15(b) shows an example of the horn movement in a drilling 
test. The data was obtained from images taken by a high-speed camera. The simulation results successfully showed 



a characteristic of the movement similar to the experimental data. The frequency, height and randomness of the 
jumps appear to agree very well with the data . 
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(a) A typical simulation results (b) Typical experimental observation 
Fig. 15. The body movement of the horn transducer 

The average speed of the free-mass hitting the drill stem was found to be 2.4 d s .  The electric input power is 21 
W and the mechanic power transferred to the drill stem is 6.5 W. The average hit frequency is 1100 Hz. The contact 
time of each free-masshit impact is short, in the range from 10 to 15 ps (see Fig. 10). Therefore, the average 
mechanic power delivered to the drill bit in the contact time is as hgh  as 540 W. 

The results show that, by using the free-mass to convert the high frequency vibrations to low frequency impacts, 
the low continuous electric input power is converted to a high mechanical power during the impact time. The later 
creates large enough strain in the rock to enable efficient drilling. 

G. Strain and stress in rocks and estimation of drilling rate 

In order to estimate the dnlling rate of the impacts, a finite element model was 
developed using ANSYS. The model predicts the strain and stress developed in 
infinite half space of rock, assuming the rock has no break. 

Preliminary results were derived by assuming that the rock is isotropic material 
with a Young's modulus of 11.2 GPa, poisons ratio of 0.3, and density of 
2470 kg/m3 . The drill bit is 3 mm in diameter. The input impact loading from the 
drill has a peak value of 50 MPa with the same time response as shown in Fig. 1 1. 

Contour maps of the maximum principal strain were plotted in Fig.15 and used as 
indication of fracture of rocks. The results show qualitative features of the rocks 
fracture under ultrasonic dnlling. We find that the highest principal strain occurs at 
the edge of the drill bit. It implies that the fracture is likely going to happen at the 
edge, which is confirmed by viewing the high speed filming during dnlling. 

In order to break rock by mechanically induced stresses, sufficient force or 
energy must be applied to the rock in order induce stresses that exceed the rock's 
strength. Once this threshold value of force or energy is exceeded, the amount of 
energy required to break or remove a unit volume of rock remains nearly constant 
[8]. This energy parameter, which is a measure of the efficiency of the drill, is 
defined as specijk energy [9]. The rate at which rock can be crushed, R, is defined 
as 

where 
R=PIE (21) 
P = power input to the rock, joules/sec; 
E = specific energy, joules/ cm , 
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Fig. 15. The principle strain 
profile. 



The specific energy E and the compression strength of various types of rocks are listed in Table 2 below [9]. 

Table 2. Specific energy and compression strength of rocks 
Rock type Compression Specific 

strength energy 
(MPa) Cjoules/cmA3) 

soft < 50 30 
Medium 50 - 100 50 
Hard 100 - 200 260 
Verv hard > 200 390 

Only the part of the energy transferred from the drill bit to the 
rock while the stress is higher than the strength of the rock is 
considered as contributing to rock pulverizing. The energy is 
obtained from the force-displacement curve for the surface of rock 
under the drill bit. It should be noted that the force-displacement 
curve is derived under the assumption that the loading does not 
exceed the strength of the rock. Otherwise the curve beyond the 
strength will appear totally different. However, we have assumed 
that the energy transferred to the rock is approximately the same. 
divided by their respective specific energy. 

0 m 20 30 40 50 60 

Maximum Power ( W a t t s )  

Fig. 16. Drilling rate for different maximum power 
(the average power is maintained at 10 watts by 
duty cycling the power supply). The range 
described by the error bar was determined 
experimentally from a variety of rock samples. 

The drilling rate is estimated by this energy 

The model was utilized to investigate and optimize the design of the USDC. The curves shown in Fig. 16 are for 
different combinations of maximum power and duty-cycle. The average power is maintained at 10 watts by 
changing the duty cycle appropriately. The experimental data of drilling rate for variety of rock sample from soft to 
medium-hard are marked in the figure. The data are agreed with the model prediction in general. 

3. CONCLUTION 
The USDC was modeled to predict its behavior towards the goal of optimizing its performance in various 

configurations. The 
piezoelectric horn transducer was modeled using finite element models and with some simplifications converted to 
an equivalent circuit to simplify the interaction of the free-mass and electronic driver. The horn tip free-mass 
interaction was analyzed by a simple collision theory to explore the basic drive mechanism and by finite element 
approach for accuracy. A spring-mass model was developed to obtain time efficient solutions. Finite element 
models were also applied to the free-masddrill bit and the drill bithock interactions. The program simulating the 
operation of the device was integrated from the models of the main parts and the interactions. 

The developed models allowed for the investigation of the various interactions of the USDC. It was shown that, 
by using the free-mass, the continuous high frequency vibration of the horn could be converted to low frequency 
hgh  mechanical power impacts. These impacts created large enough strain in the rock to enable efficient drilling. 
Using a simulation of the operation of the USDC the characteristics of the USDC performance were investigated and 
has been used to guide the design of a prototype device. The drilling rates calculated from the model were found to 
be in agreement with drilling rate data measured on a variety of rock samples. 

Physical models were developed for each section of the device and their interactions. 

REFERENCES 
Y. Bar-Cohen, S. Shenit, B. Dolgin, X. Bao, Z. Chang, R. Krahe, J. Kroh, D. Pal, S. Du, T. Peterson "Ultrasonic/Sonic 
Driller/Corer(USDC) for planerary application, " Proc. SPIE Smart Structure and Materials 2001, Volume 4327-55,2001. 
S. Shenit, X. Bao, Z. Chang, B. Dolgin, Y. Bar-Cohen, D. Pal, J. Kroh, T. Peterson "Modeling of the ultrasonic/sonic driller/corer: USDC," 
2000 IEEE Int. Ultrason. Symp. Proc., 2000, vol.1 ,pp. 691-694. 
S. Shenit, B. Dolgm, Y. Bar-Cohen, D. Pal, J. Kroh, T. Peterson, " Modeling of homs for sonic/ultrasonic applications," 1999 IEEE Int. 
Ultrason. Symp. Proc., 1999, pp. 647-651. 
H. Allik and T.J.R. Hughes, "Finite Element Method for Piezoelectric Vibration," Int. J. Num. Math. Eng., Vol. 2, 1970, pp. 151-157. 
Y. Kagawa, G.M.T. Gladwell, " Finite element analysis of flexure-type vibrators with electrostrictive transducers," IEEE Trans. Sonics 
Ultrason., vol. SU-17, 1970, pp. 41-49 
X. Bao, Q. Xu, D. Wang, "Vibration and acoustic radiation of piezoelectric transducers: FEM-equivalent circuit," Sientia Sinica, Series A :  
Math., Phys.. Astron. Tech. Scie., vol. 26, pp. 1285-1294, 1983. 
Ansys, Elements Reference Release 5.4, Canonsburg, PA: Ansys Inc, 1998, pp. 4-67. 
R. Teale, "The concept of specific energy in rock drilling," Int. J. Rock Mech. Min. Sci., vol. 2, pp. 57, 1965. 
W. Maurer, Novel Drilling Techniques, Pergamon Press, 1968. 




