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Heisenberg-limited measurement protocols can be used to gain an increase in measurement pre- 
cision over classical protocols. Such measurements can be implemented using, e.g., optical Mach- 
Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between 
the Mach-Zehnder interferometer, the Ramsey spectroscope, and a specific quantum logical gate. 
Based on this equivalence we introduce the quantum “Rosetta stone”, and we describe a projective- 
measurement scheme for generating the desired correlations between the interferometric input states 
in order to achieve Heisenberg-limited sensitivity. 
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I. INTRODUCTION 

A generic classical interferometer $as a shot-noise lim- 
ited sensitivity that scales with N-3. Here, N is either 
the number of particles passing through the interferom- 
eter during measurement time, or the number of times 
the experiment is performed with single-particle inputs 
[1,2]. However, when we carefully prepare quantum cor- 
relations between the particles, the inteferometer sensi- 
tivity can be improved by a factor of 0. That is, the 
sensitivity now scales with 1/N. This limit is imposed by 
the Heisenberg uncertainty principle. For optical inter- 
ferometers operating at several milliwatts, the quantum 
sensitivity improvement corresponds to an enhanced sig- 
nal to noise ratio of eight orders of magnitude. 

As early as 1981, Caves showed that feeding the sec- 
ondary input port of an optical Mach-Zehnder interfer- 
ometer with squeezed light yields a shot-noise lower than 
N-a (where N is now the average photon number) [3]. 
Also, Yurke et al. [4,5] showed in 1986 that a properly 
correlated Fock-state input for the Mach-Zehnder inter- 
ferometer (here called the Yurke state) could lead to a 
phase sensitivity of A$ N O(l /N) .  This improvement 
occurred for special values of $. Sanders and Milburn, 
and Ou generalized this method to obtain 1 /N sensitivity 
for all values of $ [6,7]. 

Subsequently, Holland and Burnett proposed the use of 
dual Fock states (of the form IN, N ) )  to gain Heisenberg 
limited sensitivity [8]. This dual-Fock-state approach 
opened new possibilities; in particular, Jacobson et al. 
[9], and Bouyer and Kasevich [lo] showed that the dual 
Fock state can also yield Heisenberg-limited sensitivity 
in atom interferometry. 

A similar improvement in measurement sensitivity can 
be achieved in the determination of frequency stan- 
dards and spectroscopy; an atomic clock using Ram- 
sey’s separated-oscillatory-fields technique is formally 
equivalent to the optical Mach-Zhender interferometer. 

Here, the two ~/2-pulses represent the beam splitters. 
Wineland and coworkers first showed that the best pos- 
sible precision in frequency standard is obtained by using 
maximally entangled states [ll]. Similarly, it was shown 
by one of us (JPD) that this improved sensitivity can be 
exploited in quantum gyroscopes [12]. 

Quantum lithography and microscopy is closely related 
to this enhanced sensitivity. In practice, the bottleneck 
for reading and writing with light is the resolution of 
the feature size, which is limited by the wavelength of 
the used light. In calssical optical lithography the mini- 
mum feature size is determined by the Rayleigh diffrac- 
tion limit of X/4, where X is the wavelength of the light. It 
has been shown that this classical limit can be overcome 
by exploiting the quantum nature of entangled photons 

This principle works both ways: in classical optical mi- 
croscopy too, the finest detail that can be resolved cannot 
be much smaller than the optical wavelength. using the 
same entangled-photons technique, it is possible to image 
the features substantially smaller than the wavelength of 
the light. The desired entangled quantum state for quan- 
tum interferometric lithography yielding a resolution of 
A/4N has the same form of the maximally entangled state 
discussed in Ref. [ 111. 

[ 13-18]. 

In this paper we present an overview of some aspects 
of the enhancement by quantum entanglement in inter- 
ferometeric devices, and we describe another method for 
the generation of the desired quantum states. The paper 
is organized as follows: 

In section I1 we derive the Heisenberg-limited sensitiv- 
ity and the standard shot-noise limit. Following previous 
work [19], we then introduce phase estimation with quan- 
tum entanglement. In the next section (111), we describe 
the ‘Quantum Rosetta Stone’, based on the formal equiv- 
alence between the Mach-Zehnder interferometer, atomic 
clocks, and a generic quatum logic circuit. In section IV 
we discuss three different ways of achieving the Heisen- 

1 



berg limit sensitivity. A brief description of quantum in- 
terferometric lithography and the desired quantum state 
of light is given in section V. In section VI we discuss 
quantum state preparation with projective measurements 
and its application to Heisenberg-limited interferometry. 

11. THE HEISENBERG UNCERTAINTY 
PRINCIPLE AND PARAMETER ESTIMATION 

In this section we briefly derive the measurement- 
sensitivity limits due to Heisenberg’s uncertainty princi- 
ple, and how, in general, quantum entanglement can be 
used to achieve this sensitivity. There are several stages 
in the procedure where quantum entanglement can be 
exploited, both in the state preparation and in the de- 
tection. First, we derive the Heisenberg limit, then we 
give the classical shot-noise limit, and we conclude this 
section with entanglement enhanced parameter estima- 
tion. 

Suppose we have a (2N+1)-level system. Furthermore, 
we use the angular momentum representation to find the 
minimum uncertainty AL in an observable L that is a 
dual to the angular momentum operator J,. That is, L 
and J,  obey a Heisenberg uncertainty relation: 

ti 
ALAJ,  2 5 .  

When we want minimum uncertainty in L (minimize 
AL),  we need to maximize the uncertainty in J, (max- 
imize AJ,).  Given the eigenstates {Im)};E-, of J,: 
J,lm) = mlm), maximum uncertainty in J, implies the 
state I$J) = N-2 ei@mlm). The variance in J, is 
then given by 

1 +N 

It immediately follows that the leading term in AJ, scales 
with N .  Using the equality sign in Eq. ( l ) ,  i.e., mini- 
mum uncertainty, and the expression for AJ,, we find 
that AL oc 1/N. 

This result gives the spread of measurement outcomes 
of an observable L in a (2N + 1)-level system. However, 
it is not yet cast in the language of standard parame- 
ter estimation. The next question is therefore how to 
achieve this Heisenberg-limited sensitivity when we wish 
to estimate the value of a parameter cp in N trials. 

Classically, the shot-noise limit acording to estimation 
theory is given by Acp = N - :  . We give a short derivation 
of this value and generalize it to the quantum mechanical 
case. Consider an ensemble of N two-level systems in the 
state Ip) = (IO) +*ei’I1)>/fi, where 10) and 11) denote 
the two levels. If A = ~ O ) ( l ~ + ~ l ) ( O ~ ,  then the expectation 
value of A is given by 

(VlAlcp) = coscp. (3) 

When we repeat this experiment N times, we obtain 

Furthermore, it follows from the definition of A that 
A2 = 1 on the relevant subspace, and the variance of 
A given N samples is readily computed to be (AA)2 = 
N (  1-cos2 cp) = N sin2 cp. According to estimation theory 
[2], we have 

A A  1 
Id(A)/dcpl = 7F . Acp = ( 5 )  

This is the standard variance in the parameter cp after 
N trials. In other words, the uncertainty in the phase is 
inversely proportional to the square root of the number 
of trials. This is the shot-noise limit. 

Quantum entanglement can improve the sesitivity of 
this procedure by a factor of n. We will first employ a 
path-entangled state 

where IN) is a collective state of N qubits. The relative 
phase ezN’ can be obtained by a unitary evolution of one 
o,f the modes of I c p ~ ) .  When we measure the observable 
AN = 10, N ) ( N ,  01 + IN, O)(O, NI we have 

Again, A& = 1 on the relevant subspace, and ( A A N ) ~  = 
1 - cos2 Ncp = sin2 Ncp. Using Eq. (5) again, we obtain 
the so-called Heisenberg limit to the minimal detectable 
phase: 

The precision in cp is increased by a factor 0 over the 
standard noise limit. As shown in Bollinger et aZ. [ll], 
Eq. (8) is the optimal accuracy permitted by the Heisen- 
berg uncertainty principle. In quantum lithography, one 
exploits the cos(Ncp) behaviour, exhibited by Eq. (7), 
to print closely spaced lines on a suitable substrate [14]. 
Gyroscopy and entanglement-enhanced frequency mea- 
surements [la] exploit the n increased precision. The 
physical interpretations of AN and the phase cp might 
differ in the different protocols. In the following two sec- 
tions we present three distinct physical representations 
of this construction. We call this the quantum Rosetta 
stone. 
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111. QUANTUM ROSETTA STONE 

In this section we discuss the formal equivalence be- 
tween the Mach-Zehnder interferometer, the Ramsey 
spectroscope, and a generic quantum gate. 

In a Mach-Zehnder interferometer, the input light field 
is devided into two different paths by a beam splitter, and 
recombined by another beam splitter. The phase differ- 
ence between the two paths is then measured by balanced 
detection of the two output modes (see Fig. la). With a 
coherent laser field as the input the phase sensitivity is 
given by the shot noise limit N - 4 ,  where N is the aver- 
age number of photons passing though the interferometer 
during measurement time. When the number of photons 
is exactly known (i.e., the input is a Fock state IN)), the 
phase sensitivity is still given by N - i  , indicating that 
the photon counting noise does not originate from the 
intensity fluctuations of the input beam [20,12]. 

By contrast, in a Ramsey spectroscope, atoms are put 
in a superposition of the ground state and an excited 
state with a ~/2-pulse (Fig. lb). After moving through a 
cavity or another medium, a second ~/2-pulse is applied 
to the atom, and depending on the relative phase shift 
obtained by the excited state, the outgoing atom is either 
in the ground or the excited state. This is essentially an 
atomic clock. 

-0- 

B-+ -++ +- 
- 

(a 
Hadamard gate I 

A 

B 

FIG. 1. The quauntum Rosetta stone. (a) An optical 
Mach-Zenhder interferometer. (b) Ramsey atomic clock. (c) 
A quantum logic gate representing the equivalent physical 
proccess. 

Let denote iit, bt for the two input mode operators in 
Fig. l(a). In the Schwinger representation, the common 
eigenstates of j 2  and j, are the two-mode Fock states 
(j, m) = Ij + m ) ~ l j  - m ) ~  where 

The role of the interferometer can be described by the 
rotation of the angular momemtum vector, where Gtii + 
i t6  = N = 2 j ,  and the 50/50 beam splitters and the 
phaser shift are corresponding to the operators e1rjz/2 
and eibjz, respectively. Such a formalism is analogous 
to therotation of the Bloch vector describing a two level 
atomic system. 

A third system is given by a qubit that undergoes a 
Hadamard transform H ,  then picks up a relative phase 
and is then transformed back with a second Hadamard 
transformation (Fig. IC). We call the formal analogy be- 
tween these three systems the quantum Rosetta stone. 
In every protocol, the initial state is transformed by a 
discrete Fourier transform (beam splitter, nl2-pulse or 
Hadamard), then picks up a relative phase, and is trans- 
formed back again. As a consequence, the phase shift 
(which is hard to  measure directly) is applied to the 
transformed basis. The result is a bitflip in the initial, 
computational, basis {IO), Il)}, and this is readily mea- 
sured. 

These schemes can be generalized from measuring a 
simple phase shift to evaluating the action of a uni- 
tary transformation U j  associated with a complicated 
function f on multiple qubits. Such an evaluation is 
also known as a quantum computation. According to 
our Rosetta stone, the concept of quantum computers is 
therefore to exploit quantum interference in obtaining the 
outcome of a computation of f. In this light, a quantum 
computer is nothing but a (complicated) multiparticle 
quantum interferometer [21]. 

IV. QUANTUM ENHANCEMENT IN PHASE 
MEASUREMENTS 

There have been various proposals for achieving the 
Heisenberg limit sensitivity, corresponding to different 
physical realizations of the state I ~ N )  and observable AN 
in Eq. (7). Here, we discuss three different approaches, 
categorized according to  the different quantum states. 
We distinguish Yurke states, dual Fock states, and max- 
imally path-entangled states. 

A. Yurke states 

By utilizing the 4 2 )  algebra of spin angular momen- 
tum, Yurke et ai. have shown that, with a suitably corre- 
lated input state, the phase sensitivity can be improved 
to 1/N [4,5]. For spin-l/2 fermions, the entangled input 
state (which we call the ‘Yurke state’) is given by 
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To obtain increased sensitivity with dual Fock states, 
some special detection scheme is needed. In a conven- 
tional Mach-Zehnder interferometer only the difference 

1 . N  N 
Jz 2 2 2 

I\E) = - [ / I  = -,m = A) + / j  = -,m = -- 

, (lobf the number of photons at the output is measured. 

where the notion of lj,m) follows the definition given 
in Eq. (9) and the subscripts AB denote the two in- 
put modes. For bosons, a similar input state, namely 
Ij = N/2, m = 0) + Ij = N/2, m = l), has been proposed 
[5]. Although the input state of Eq. (10) was proposed 
for spin-l/2 fermions, the same state with bosons also 
yields the phase sensitivity of the order of 1/N [12]. Fur- 
thermore, it has been shown that the Heisenberg limited 
sensitivity can be achieved by using so-called the mini- 
mum uncertainty state or the intelligent state. The min- 
imum uncertainty state is defined as A J , A  J ,  = I ( J , )  1/2, 
and such a state with A J ,  + 0 can yield the Heisenberg 
limited sensitivity under certain conditions [22,23]. 

FIG. 2. Three catagories for achieving the Heisenberg lim- 
ited phase sensitivity. Emphasis on the distinctive features 
are termed as “magic”. (a) Correlated input state, (b) dual 
Fock-state input, (c) maximally correlated state. 

B. Dual Fock states 

In order to achieve Heisenberg-limited sensitivity, Hol- 
land and Burnett proposed the use of so-called dual Fock 
states EN C N ~ N ) A  8 IN)B for two input modes A and 
B of the Mach-Zehnder interferometer [8]. Such a state 
can be generated, for example, by degenerate paramet- 
ric down conversion, or by optical parametric oscillation 
~ 4 1 .  

Here, one measures both the sum and the difference of 
the photon number in the two output modes. The sum 
contains information about the total photon number, and 
the difference contains information about the phase shift. 
Information about the total photon number then allows 
for post-processing the information about the photon- 
number difference. 

Similarly, in atom interferometers, measurements are 
performed by counting the number of atoms in a spe- 
cific internal state using fluorescence. For the schemes 
using dual Fock-state input, an additional measurement 
is required since the average in the intensity difference 
of the two output ports does not contain information 
about the phase shift. A combination of a direct mea- 
surement of the variance of the difference current and a 
data-processing method based on Bayesian analysis was 
proposed by Kim et al. [24]. For atom interferometers, a 
quantum nondemolition measurement is required to give 
the total number of atoms [lo]. In a similar context, Ya- 
mamoto and coworkers devised an atom interferometry 
scheme that uses a 7r/2 pulse for the readout of the input 
state correlation [9]. 

Due to its simple form, the dual Fock-state approach 
may shed a new light on Heisenberg-limited interfer- 
ometry. In particular, exploiting the fact that atoms 
in a Bose-Einstein condensate can be represented by 
Fock states, Bouyer and Kasevich have shown that the 
quantum noise in atom interferometry using dual Bose- 
Einstein consensates can also be reduced to the Heisen- 
berg limit [ 101. 

C. Maximally path-entangled states 

The third, and last, category of states is given by the 
maximally path-entangled states. 

There have been proposals to overcome the standard 
shot noise limit in frequency standard and spectroscopy 
by using spin-squeezed states [25-291. However, it has 
been demonstrated by Wineland and coworkers that the 
optimal frequency measurement can be achieved by using 
maximally correlated states, which has the form as [ll] 

Although in frequency measurement partially entan- 
gled states with high degree of symmetry was later shown 
to have a better resolution in presence of decoherence 
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[30,31], such a maximally correlated state is of great in- 
terest in optical interferometers. 

All the interferometer schemes using the correlated in- 
put states, or the dual Fock-state input, show the phase 
sensitivity approches to  l/N, only asymptotically, How- 
ever, using the maximally correlated states of Eq. (ll), 
the phase sensitivity is equal to 1/N, even for a small N. 
One distinctive feature compared to the other schemes 
described above is that it is the desired quantum state 
after the first beam splitter in the Mach-Zehnder inter- 
ferometer, not the input state. In that the desired input 
state is described as the inverse beam-splitter operation 
to the state of Eq. (11). 

V. QUANTUM LITHOGRAPHY AND 
PROJECTIVE MEASUREMENTS 

Quantum correlations can also be applied to optical 
lithography. In recent work it has been shown that the 
Rayleigh diffraction limit in optical lithography can be 
circumvented by the use of path-entangled photon num- 
ber states [13,14]. The desired N-photon path-entangled 
state, for N-fold resolution enhancement, is again of the 
form given in Eq. (6). 

Consider the simple case of a two-photon Fock state 
Il)AIl)B, which is a natural component of a sponta- 
neous parametric down-conversion event. After passing 
through a 50/50 beam splitter, it becomes an entangled 
number state of the form 12)AIO)B + l O ) ~ 1 2 ) ~ .  Interfer- 
ence suppresses the probability amplitude of 1 1 ) ~  1 1 ) ~ .  
According to quantum mechanics, it is not possible to  
tell whether both photons took path A or B after the 
beam splitter. 

When parametrizing the position x on the surface by 
cp = 7rx/X, the deposition rate of the two photons onto 
the substrate becomes 1 + cos 2cp, which has twice better 
resolution (X/8) than that of single-photon absorption, 
1 + coscp, or that of uncorrelated twc-photon absorp- 
tion, (1 + cos (P)~ .  For N-photon path-entangled state 
of Eq. ( l l ) ,  we obtain the deposition rate 1 + cos Ncp, 
corresponding to a resolution enhancement of X/4N. 

It is well known that the two-photon path-entangled 
state of Eq. (11) can be generated using a Hong-Ou- 
Mandel (HOM) interferometer [32] and two single-photon 
input states. A 50/50 beam splitter, however, is not suf- 
ficient for producing path-entangled states with a photon 
number larger than two [33]. 

In terms of quantum logic gates, the maximally corre- 
lated state of the form of Eq. (11) can be made using a 
Hadamard and a sequence of C-NOT gates. however, 
building optical C-NOT gates normally requires large 
nonlinearities. Consequently, in generating such states 
it is commonly assumed that x ( ~ )  nonlinear optical com- 
ponents are needed for N > 2. 

Knill, Laflamme, and Milburn proposed a method 
for creating probabilistic single-photon quantum logic 
gates based on teleportation. The only resources for 
this method are linear optics and projective measure- 
ments [34]. Probabilistic quantum logic gates using po- 
larization degrees of freedom have been proposed by 
Imoto and co-workers, and €+anson’s team [35,36]. In 
particular, Pittman, Jacobs, and Franson have exper- 
imentally demonstrated polarization-based C-NOT im- 
plementations [37]. Using the concept of projective mea- 
surements, we have previously demonstrated that the de- 
sired path-entangled states can be created when condi- 
tioned on the measurement outcome [38,19]. This way, 
one can avoid the use of large ~ ( ~ 1  nonlinearities [40]. 

VI. PROJECTIVE MEASUREMENTS AND 
HEISENBERG-LIMITED INTERFEROMETRY 

The concept of projective measurements can also be 
applied to the Heisenberg limited interferometry, in 
which the desired correlation between the two input state 
can be established directly from the dual Fock state. Let 
us consider a scheme depicted in Fig. 3. The input modes 
are transformed by the beam splitters as follows: 

ht+ itti’t + d, 
it+ itU + rc’t, (12) 

where i = &i, and it and I- are the transmission and 
reflection coefficients given by t2 +r2 = 1. In our conven- 
tion, a 50/50 beam splitter, for example, is identified as 
t = l/a and r = -1 / f i .  The mode G’ and 6‘ further 
pass through an additional 50/50 beam splitter, which is 
characterized by the transformations 

FIG. 3. Generation of th: suitable correlation via projec- 
tive measurements. Mixing the modes 6 and 6 yields a fun- 
damental lack of knowledge about which-path information. 
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Let us assume the dual Fock state for the input state 
such as 

Since we have the beam splitter transformation as 

( & t ) N  + NCk(~'t)N-k(C't)krk(it)N-k, (15) 
k 

after ther first two beam splitters, 19in) transforms as 

(u -1 t )k  ( ,$ t ) l rk+ l  (it)2N-k-t 10). (16) 

Now we require the modes C', 6' passing through the 
50/50 beam splitter and a signle photon is detected at 
each detector. Assuming perfect detectors, this restrict 
the final state after the beam splitter of the form con- 
taining only ttdt component. Then, from Eq. (13), we 
have 

C't6It-+ -i [ ( i t )2  + ( d t ) 2 ]  /2, 

(C't)2-+ [ ( e y  - z i t t i t  - (2921 /2, 

(6't)2+ [ - ( d ) 2  - 2 i i + a  + (&)"3 /2, (17) 

and we can see that only (C't)2 and (.i't)2 terms are se- 
lected by the detection of a sinle photon at each detector. 

Consequently, we need to select only the terms with 
k = 2,l = 0 or k = 0,l = 2 in Eq. (16), so that it gives 

1 2 2N-2 
IQin) + 3 NC2r t 

[ ( & ' t ) N - 2 ( $ t ) N  + (2' t )N(6' t )N-2]  IO), (18) 

where the irrelvant phase factor ( - i ) i2N-2  has been 
dropped. By replacing ii', &' with ii, 6, we may write 

(G2 + i2)lSi,), (19) - - ,2t2N-2 1 
2 

where we have used the relation ~C~( i i t )~ - ' lO)  = 
(1/2)ii2(&t)N10). Finally, using the input state of IN, N )  
the output state, conditioned upon coincident count is 
given by 

(20) 
A 

- [ lN,N-2)  + I N - 2 , N ) l ,  Jz 
where A = d N ( N  - 1)/2 r2t2N-2,  and the maximum 
probability success is obtained when r2 = & and, t2 = 
N--l 

N '  

Now consider that such a state given in Eq. (20) is 
entering two input port of of the Mach-Zehnder interfer- 
ometer. An explicit calculation for the phase sensitivity 
using such an input state is given in Ref. [12]which is ap- 
proaching to the Heisenberg limit as 0(1/N).  The gen- 
eration of desired correlation described in Sec. 3A, can 
be achieved from the dual Fock state with a probability 
given by [AI2, which has its asymptotic value of 1/2e2. 

In atom interferometry a similar technique for the the 
generation of such a correlation has been proposed [12] 
by selective measurements on two interfering Bose con- 
densates [41]. 

VII. SUMMARY 

In this paper we readdress the equivalence among 
the optical Mach-Zehnder interferometer, Ramsey spec- 
troscopy technique, and the generic quantum logic gates. 
Based on such an equivalence we introduce, so we call, 
the quantum Rosetta stone. The method of projective 
measurements applied first in the quantum computing, 
for example, is found to be useful in generation of the 
desired quantum state of light for quantum interferomet- 
ric lithography. The dual Fock-state approach to Heisen- 
berg limited interferometry normally accompanied by ad- 
ditional detection schemes. Generation of a suitable cor- 
relation from the dual Fock state via projective measure- 
ment may be useful by avoiding those complicated sig- 
nal processings or QND-type input state measurements. 
One can also envision a single-photon QND device in this 
paradigm [42]. Many more fascinating insights are ex- 
pected by the application of the quantum Rosetta stone 
to quantum metrology and quantum information process- 
ings. 
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